КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Тема 1.9 Электрические машины постоянного тока
Студент должен: знать: принцип работы двигателей постоянного тока с параллельным или смешанным возбуждением; уметь: проводить расчет характеристик двигателя постоянного тока.
Назначение машин постоянного тока и их классификация. Устройство и принцип действия машин постоянного тока: магнитная цепь, коллектор, обмотка якоря. Рабочий процесс машины постоянного тока: электродвижущая сила обмотки якоря, реакция якоря, коммутация. Генераторы постоянного тока, двигатели постоянного тока, общие сведения. Электрические машины с независимым возбуждением, с параллельным, последовательным и смешанным возбуждением. Пуск в ход, регулирование частоты вращения двигателей постоянного тока. Потери энергии и коэффициент полезного действия машин постоянного тока [1, С.239-281].
Методические указания
В целях лучшего освоения данной темы необходимо предварительно изучить тему 1.2. Электрическая машина постоянного тока состоит из двух основных частей: неподвижной части и вращающейся. Индуктор состоит из станины цилиндрической формы, изготовленной из ферромагнитного материала, и полюсов с обмоткой возбуждения, закрепленных на станине. Обмотка возбуждения создает основной магнитный поток. Магнитный поток может создаваться постоянными магнитами, укрепленными на станине. Якорь состоит из следующих элементов: сердечника, обмотки, уложенной в пазы сердечника, коллектора. Сердечник якоря для уменьшения потерь на вихревые точки набирается из изолированных друг от друга листов электротехнической стали. В реальных электрических машинах постоянного тока используется специальное контактное устройство - коллектор. Коллектор устанавливается на одном валу с сердечником якоря и состоит из отдельных изолированных друг от друга и от вала якоря медных пластин. Каждая из пластин соединена с одним или несколькими проводниками якорной обмотки. На коллектор накладываются неподвижные контактные щетки. С помощью контактных щеток вращающаяся якорная обмотка соединяется с сетью постоянного тока или с нагрузкой. Любая электрическая машина обладает свойством обратимости, т.е. может работать в режиме генератора или двигателя. Если к зажимам приведенного во вращение якоря генератора присоединить сопротивление нагрузки, то под действием ЭДС якорной обмотки в цепи возникает ток.
Вопросы для самоконтроля
1 Назовите основные части машины постоянного тока и укажите их назначение. 2 Каково устройство и назначение коллектора у генераторов постоянного тока? 3 Какие бывают типы обмоток якоря? 4 Как устроен генератор с независимым возбуждением? Указать его свойства, преимущества, недостатки. Как включить генератор с параллельным возбуждением на параллельную работу? 5 Почему нельзя включить двигатель постоянного тока в сеть без пускового реостата? 6 Как можно регулировать скорость вращения двигателя постоянного тока?
Тема 1.10 Основы электропривода
Студент должен: знать: знать основные параметры электропривода, правила эксплуатации электрооборудования уметь: строить для выбранного двигателя реальную нагрузочную диаграмму, проводить расчет мощности двигателя при различных режимах работы.
Понятие об электроприводе. Уравнение движения электропривода. Механические характеристики нагрузочных устройств. Расчет мощности и выбор двигателя при продолжительном, кратковременном и повторно кратковременном режимах. Аппаратура для управления электроприводом [1, С.281-317].
Методические указания
Электрический привод представляет собой электромеханическое устройство, предназначенное для приведения в движение рабочего органа машины и управления ее технологическим процессом. Он состоит из трех частей: электрического двигателя, осуществляющего электромеханическое преобразование энергии, механической части, передающей механическую энергию рабочему органу машины, и системы управления, обеспечивающей оптимальное по тем или иным критериям управление технологическим процессом. Все режимы в электроприводе делятся на установившиеся и переходные. Установившийся режим работы электропривода определяется из условия равенства нулю динамического момента. Этот режим характеризуется работой двигателя с неизменной угловой скоростью, постоянными во времени и равными по величине моментом двигателя и моментом сопротивления. Установившийся режим описывается статическими характеристиками. Переходным режимом электропривода называют режим работы при переходе от одного установившегося состояния к другому, когда изменяются скорость, момент и ток. Характер переходного режима электропривода зависит от свойств рабочей машины, типа примененного двигателя и механической передачи, принципа действия и свойств аппаратуры управления, а также от режима работы двигателя (пуск, торможение, прием и сброс нагрузки и т. д.). Переходные режимы описываются динамическими характеристиками.
Вопросы для самоконтроля
1 Структура и состав электропривода. 2 Технический прогресс составляющих электропривода. 3 Базовая модель механики электропривода. 4 Механические характеристики и их типы. 5 Установившийся режим в механике электропривода. Устойчивые и неустойчивые режимы. 6 Электроприводы постоянного тока. Конструкция двигателя. Основные уравнения, характеристики.
|