Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Алгоритм расчета переходного процесса классическим методом




Читайте также:
  1. B) это составная часть общественного воспроизводства, отражающая те же стадии (фазы) процесса воспроизводства, но только со стороны движения инвестиционного капитала;
  2. I. Состав строительного (монтажного, ремонтно-строительного) процесса
  3. II. 1. Системный подход к построению воспитательного процесса
  4. II. Индукция методом исключения
  5. II. Начало процесса исторического развития общества.
  6. III. Алгоритм решения кинематических задач
  7. III.1.1) Формы уголовного процесса.
  8. IV.3.2) Виды легисакционного процесса.
  9. IV.4.1) Происхождение и смысл формулярного процесса.
  10. IV.4.3) Общий ход формулярного процесса.

Для анализа переходного процесса предварительно следует привести схему к минимальному числу накопителей энергии, исключив параллельные и последовательные соединения однотипных реактивных элементов (индуктивностей или емкостей). Система интегродифференциальных уравнений, составленных в соответствии с законами Кирхгофа или методом контурных токов, может быть сведена путем подстановки к одному дифференциальному уравнению, которое используется для составления характеристического уравнения.

Порядок дифференциального, следовательно, и характеристического уравнения зависит от числа реактивных элементов приведенной схемы. Главная трудность в решения задачи классическим методом для уравнений высоких порядков состоит в отыскании корней характеристического уравнения и постоянных интегрирования. Поэтому для решения уравнений порядка выше второго применяют другие методы, в частности операторный метод, основанный на применении преобразования Лапласа и исключающий трудоемкую процедуру отыскания постоянных интегрирования.

Для практических целей при анализе переходных процессов в любой схеме классическим методом может быть рекомендован следующий алгоритм.

1. Рассчитать принужденный (установившийся) режим при t→∞. Определить принужденные токи и напряжения.

2. Рассчитать режим до коммутации. Определить токи в ветвях с индуктивностью и напряжения на конденсаторах. Значения этих величин в момент коммутации является независимыми начальными условиями.

3. Составить дифференциальные уравнения для свободного процесса (Е = 0) в схеме после коммутации по законам Кирхгофа или по методу контурных токов. Алгебраизировать данные уравнения, получить характеристическое уравнение и найти его корни. Существуют приемы, упрощающие операцию отыскания корней характеристического уравнения, например, приравнивание нулю входного операторного сопротивления цепи, которое получается путем замены в выражении комплексного сопротивления цепи множителя "jω" на оператор "р".

4. Записать общие выражения для искомых напряжений и токов в соответствии с видом корней характеристического уравнения.

5. Переписать величины, полученные в п. 4, и производные от них при t = 0.



6. Определить необходимые зависимые начальные условия, используя независимые начальные условия.

7. Подставив начальные условия в уравнения п. 5, найти постоянные интегрирования.

8. Записать законы изменения искомых токов и напряжений.

 


Переходный процесс в цепи R, L. Установившаяся и свободная составляющие переходного процесса при включении в цепь R, L постоянной ЭДС. Определение времени завершения переходного процесса.

Рассмотрим переходные процессы в цепи, содержащей последовательно соединенные резистор R и индуктивность L . Уравнение Кирхгофа для такой цепи

,где u = u(t) - напряжение на входе цепи.

Найдем решение этого уравнения для свободной составляющей тока, т.е. при u = 0, в виде iс = Iept . Для этого подставим выражение для тока в исходное уравнение и найдем значение p .

Выражение Lp + R=0 представляет собой характеристическое уравнение, которое могло быть получено без подстановки общего выражения для свободной составляющей формальной заменой в однородном дифференциальном уравнении производных тока на pk, где k - порядок производной.

Таким образом, общее решение для тока при переходном процессе в R-L цепи можно представить в виде



(1)

где t = 1/|p| = L/R - постоянная времени переходного процесса; I - постоянная интегрирования, определяемая по начальным значениям; i - установившийся ток в цепи, определяемый по параметрам R и L и напряжению на входе u. Длительность переходного процесса в цепи, определяемая значением t , возрастает с увеличением L и уменьшением R.

Рассмотрим подключение R-L цепи к источнику постоянной ЭДС E (рис. 1 а)).

Установившийся ток в этой цепи будет определяться только ЭДС E и резистивным сопротивлением R, т.к. после окончания переходного процесса i = const и uL = Ldi/dt = 0, т.е. iу = E/R .

Полный ток в переходном процессе из выражения (1)

.

Для определения постоянной I найдем начальное тока. До замыкания ключа ток очевидно был нулевым, а т.к. подключаемая цепь содержит индуктивность, ток в которой не может измениться скачкообразно, то в первый момент после коммутации ток останется нулевым. Отсюда

.

Подставляя найденное значение постоянной I в выражение для тока, получим

. (2)

Из этого выражения можно определить падения напряжения на резисторе uR и индуктивности uL

(3)

Из выражений (1)-(3) следует, что ток в цепи нарастает по экспоненте с постоянной времени t = L/R от нулевого до значения E/R (рис. 1 б)). Падение напряжения на сопротивлении uR повторяет кривую тока в измененном масштабе. Напряжение на индуктивности uL в момент коммутации скачкообразно возрастает от нуля до E , а затем снижается до нуля по экспоненте (рис. 1 б).

Подставляя выражения (3) в уравнение Кирхгофа для цепи после коммутации, можно убедиться в его справедливости в любой момент времени



.


Дата добавления: 2015-04-16; просмотров: 55; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.02 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты