Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



СТРОЕНИЕ ТКАНЕЙ КАРТОФЕЛЯ, ОВОЩЕЙ, ПЛОДОВ




Читайте также:
  1. II. Построение карты гидроизогипс
  2. II. Построение карты гидроизогипс
  3. II. СТРОЕНИЕ ОБЩЕСТВА, СОЦИАЛЬНЫЕ ИНСТИТУТЫ
  4. IX.1.4.1. Строение атома
  5. Автопостроение каналов
  6. Аксиоматическое построение силлогистики.
  7. Аксиоматическое построение теории вероятностей.
  8. Алгоритм использования команд ВИД и ПОСТРОЕНИЕ
  9. Анатомическое строение слизистой оболочки глаза.
  10. Анатомия кожи и её производных. Молочная железа: строение, кровоснабжение, иннервация. 1 страница

Ткань (мякоть) картофеля, овощей и плодов состоит из тон­костенных клеток, разрастающихся примерно одинаково во всех направлениях. Такую ткань называют паренхимной. Содер­жимое отдельных клеток представляет собой полужидкую мас­су — цитоплазму, в которую погружены различные клеточные элементы (органеллы) — вакуоли, пластиды, ядра, крахмальные зерна и др. (рис. 9.2). Все органеллы клетки окружены мембрана­ми. Каждая клетка покрыта оболочкой, представляющей собой первичную клеточную стенку.

Оболочки каждых двух соседних клеток скрепляются с по­мощью срединных пластинок, образуя остов паренхимной ткани (рис. 9.3).

Контакт между содержимым клеток осуществляется через плазмодесмы, которые представляют собой тонкие цитоплазматические тяжи, проходящие через оболочки. •

Поверхность отдельных экземпляров овощей и плодов по­крыта покровной тканью — эпидермисом (плоды, наземные овощи) или перидермой (картофель, свекла, репа и др.).

Поскольку в свежих овощах содержится значительное коли­чество воды, то все структурные элементы их паренхимной ткани в той илиЧшой степени гидратированы. Вода как растворитель оказывает важное влияние на механические свойства растительной ткани. Гидратируя в той или иной степени гидрофильные соединения, она пластифицирует структуру стенок и срединных пластин. Это обеспечивает достаточно высокое тургорное дав­ление в тканях.

Тургор — состояние напряжения, возникающее вследствие давле­ния содержимого клеток на их эластичные оболочки и давления оболо­чек на содержимое клеток.

Тургорное давление может снижаться, например, при увядании или подсыхании овощей и плодов или возрастать, что наблюдается при погружении увядших овощей в воду. Это свойство овощей и плодов можно учитывать при их кулинарной переработке. Так, картофель и корнеплоды с ослабленным тур-гором перед механической очисткой рекомендуют замачивать в течение нескольких часов для сокращения времени обработки и снижения количества отходов.

 

Рис. 9.2. Строение растительной клетки

 

Рис. 9.3. Стенка растительной ткани:

1 -— срединная пластинка; 2 — плазмалемма.

Увеличение х 45000 (по Ж.-К. Ролан, А. Сёлеши, Д. Сёлеши)

 

Вакуоль — самый крупный элемент, расположенный в цен­тре клетки. Она представляет собой своеобразный пузырек, запол­ненный клеточным соком, и является наиболее гидратированным элементом клетки паренхимы овощей и плодов (95...98 % воды). В состав сухого остатка клеточного сока входят в том или ином количестве практически все водорастворимые пищевые вещества.



Основная масса Сахаров, содержащихся в картофеле, овощах и плодах в свободном состоянии, растворимого пектина, органи­ческих кислот, водорастворимых витаминов и полифенольных соединений концентрируется в вакуолях.

В клеточном соке содержится примерно 60... 80 % мине­ральных веществ от общего их количества в овощах и плодах. Со­ли одновалентных металлов (калия, натрия и др.) практически полностью концентрируются в клеточном соке. Солей же каль­ция, железа, меди, магния содержится в нем несколько меньше, так как они входят в состав других элементов тканей.

Клеточный сок содержит как свободные аминокислоты, так и растворимые белки, которые образуют в вакуолях растворы от­носительно слабой концентрации.

Тонкий слой цитоплазмы с другими органеллами занима­ет в клетке пристенное положение. В состав цитоплазмы входят в основном белки, ферменты и в небольшом количестве липиды (соотношение белков и липидов 90:1). В цитоплазме, как и в ва­куолях, они находятся в виде раствора, но более концентриро­ванного (10 %).



Пластиды — это органеллы, которые присутствуют только в растительных клетках. Наиболее типичные из них — хлоропласты, которые содержат хлорофилл. В определенных физиологи­ческих условиях пластиды не образуют хлорофилл; в этих случа­ях они вырабатывают либо белки (протеопласты), либо липиды и пигменты (хромопласты), но чаще всего такие пластиды выпол­няют резервные функции, и тогда в них накапливается крахмал (амилопласты), поэтому пластиды бывают окрашенными и бес­цветными. Последние называют лейкопластами.

В состав хлоропластов кроме хлорофилла входят белки и липиды в соотношении 40:30, а также крахмальные зерна.

В процессе развития хромопластов образуются крупные глобулы, или кристаллы, содержащие каротиноиды, в том числе и каротины. Присутствие этих пигментов в зеленых овощах и не­которых плодах (крыжовник, виноград, слива ренклод и др.) обусловливает различные оттенки их зелено-желтой окраски. Каротины придают желто-оранжевую окраску моркови, репе и др. Однако не всегда оранжевая окраска указывает на высокое содержание их в плодах и овощах; например, окраска апельси­нов, мандаринов обусловлена другим пигментом — криптоксантином. В то же время в зеленых овощах относительно высокое содержание каротина может быть замаскировано хлорофиллом.

Амилопласты заполнены в основном крупными гранула­ми крахмала. Следует отметить, что в растительных клетках все содержащиеся в них крахмальные зерна находятся в пространст­ве, ограниченном оболочкой амилопластов или других пластид.



Ядро клетки содержит хроматин (деспирализованные хро­мосомы), состоящий из ДНК и основных белков (гистонов), и ядрышки, богатые РНК.

Мембраны — это активный молекулярный комплекс, спо­собный осуществлять обмен веществ и энергии.

Цитоплазма на границе с клеточной оболочкой покрыта про­стой мембраной, называемой плазмалеммой. Внешнюю гра-ни1ДУ плазмалеммы можно увидеть при рассмотрении под микро­скопом препаратов растительной ткани, обработанных концент рированным раствором поваренной соли. Из-за разности между осмотическим давлением внутри клетки и вне ее происходит пе­реход воды из клетки в окружающую среду, вызывающий плазмо­лиз — отделение цитоплазмы от клеточной оболочки. Аналогич­но плазмолиз можно вызвать, обрабатывая срезы растительной ткани концентрированными растворами Сахаров или кислот.

Цитоплазматические мембраны регулируют клеточную про­ницаемость, избирательно задерживая либо пропуская молекулы и ионы тех или иных веществ в клетку и за ее пределы.

Вакуоль, как и цитоплазма, также окружена простой мембра­ной, называемой тонопластом.

Основные структурные компоненты мембран — белки и по­лярные липиды (фосфолипиды). Существуют различные типы строения цитоплазматической мембраны: трехслойное (из двух слоев белка с биомолекулярной прослойкой липидов), грануляр­ное (из частиц, диаметр которых составляет около 100 • Ю-10 м, или из более мелких частиц — субъединиц). В настоящее время мембрану рассматривают как жидкую структуру, пронизанную белками.

Поверхность ядер, пластид и других цитоплазматических структур покрыта двойной мембраной, состоящей из двух рядов простых мембран, разделенных перинуклеарным пространст­вом. Эти мембраны препятствуют также смешиванию содержи­мого двух соседних органелл. Отдельные вещества переходят из одних органелл в другие лишь в строго определенных количест­вах, необходимых для протекания физиологических процессов в тканях.

Клеточные оболочки в совокупности со срединны­ми пластинками называют клеточными стенками. В от­личие от мембран они характеризуются полной проницаемостью.

Клеточные стенки составляют 0,7...5,0 % сырой массы ово­щей и плодов. Так, в овощах плодовой группы, например в ка­бачках, количество их не превышает 0,7 %. В листовых овощах — белокочанной капусте, салате, шпинате — около 2 %. Наиболь­шим содержанием клеточных стенок отличаются корнеплоды — 2...4%.

В состав клеточных стенок входят в основном полисахариды (80...95 %) — клетчатка, гемицеллюлозы и протопектин, поэтому их часто называют углеводами клеточных стенок. В со­став клеточных оболочек входят все перечисленные выше поли­сахариды. Считают, что срединные пластинки состоят в основном из кислых полисахаридов (протопектина), играющих роль межклеточного цементирующего вещества, которому иногда со­путствуют протеиновые соединения, а в наиболее старых тка­нях — лигнин.

 

 

Таб.9.1. Содержание экстенсина и оксипролина

в клеточных стенках некоторых растительных продуктов(%)

 

Продукт Экстенсии Оксипролин
Картофель 22,0 1,2
Морковь 12,0 0,6
Свекла 11,9 1,6
Петрушка (корень) 8,8 0,4
Дыня ^ 2,8...5,0 0,08. ..0,36

Кроме углеводов в клеточных стенках содержатся азотистые вещества, лигнин, липиды, воска, минеральные вещества.

Из азотистых веществ в клеточных стенках растительной тка­ни обнаружен структурный белок экстенсии — полимер из груп­пы гликопротеидов, белковая часть которого связана с углевода­ми — остатками арабинозы и галактозы. Молекулярная масса белковой части таких макромолекул равна 50 000, экстенсии имеет форму жесткого стержня, на 50 % состоит из оксипролина. В клеточной стенке присутствует несколько фракций белка, раз­личающихся содержанием оксипролина.

Экстенсии в некоторых отношениях напоминает белок кол­лаген, выполняющий аналогичные функции в животных тканях. Содержание экстенсина и оксипролина в клеточных стенках раз­личных овощей и картофеля неодинаково (табл. 9.1). Клеточные стенки картофеля состоят примерно на 1/5 из экстенсина. В кле­точных стенках корнеплодов его содержится в 2 раза меньше, чем в клеточных стенках картофеля; в клеточных стенках дыни содержание экстенсина не превышает 5 %.

Содержание оксипролина в клеточных стенках этих расти­тельных продуктов колеблется в зависимости от вида продукта от сотых долей процента до 1,5 % и более.

Содержание в клеточных стенках экстенсина и оксипролина изменяется в процессе хранения овощей. Особенно заметны эти изменения при повреждении ткани овощей. Так, в дынях при повреждении плодов содержание белков в клеточных стенках возрастает в 3...4 раза, а оксипролина — в 5... 10 раз.

Соотношение углеводов и экстенсина в клеточных стенках зависит от вида растительной ткани. Клеточные стенки многих растительных продуктов состоят примерно на 1/3 из целлюлозы, на 1/3 из гемицеллюлоз и на 1/3 из пектиновых веществ и белка. В клеточных стенках томатов между углеводами и белком суще­ствует другое соотношение —1:1.

Лигнин — природный полимер сложного строения, фор­мирующий клеточные стенки растений. Играет роль инкрусти­рующего вещества, скрепляющего волокна целлюлозы и геми­целлюлоз. Ковалентно связан с полисахаридами гемицеллюлоз (кспланом), с пектиновыми веществами и белком. Содержание лигнина в тканях растений зависит от их вида и степени одревес­нения. Значительное количество лигнина содержится в клеточ­ных стенках свеклы, моркови, меньше его накапливается в бело­кочанной капусте.

В связи с тем, что размягчение картофеля, овощей и плодов, происходящее в процессе их тепловой кулинарной обработки, связывают с деструкцией клеточных стенок, представляется це­лесообразным рассмотреть строение последних.

По современным представлениям, клеточная стенка — это вы­соко специализированный агрегат, состоящий из различных по­лимеров (целлюлозы, гемицеллюлоз, пектиновых веществ, белков и др.), структура которых у разных растений закодирована с той же степенью точности, что и структура молекул белков.

На рис. 9.4 представлена модель структуры первичной клеточной стенки.

Первичная клеточная стенка состоит из волокон (микрофиб­рилл) целлюлозы, которые занимают менее 20 % объема гидратированной стенки. Располагаясь в клеточных стенках парал­лельно, целлюлозные волокна с помощью водородных связей образуют мицеллы, которые имеют правильную, почти кристал­лическую упаковку. Одна мицелла целлюлозы может отстоять от другой на расстоянии, равном десяти ее диаметрам. Пространст­во между мицеллами целлюлозы заполнено аморфным основ­ным веществом (матриксом), состоящим из пектиновых ве­ществ, гемицеллюлоз (ксилоглюкан и арбиногалантан) и струк­турного белка, связанного с тетрасахаридами.

Первичная стенка клетки рассматривается как целая мешко­образная макромолекула, компоненты которой тесно взаимо­связаны. Между мицеллами целлюлозы и ксилоглюканом суще­ствуют многочисленные водородные связи. В свою очередь, кси­логлюкан ковалентно связан с боковыми галактановыми цепями пектиновых веществ, а пектиновые вещества через арабиногалактан ковалентно связаны со структурным белком.

Учитывая, что клеточные стенки многих овощей и плодов от­личаются относительно высоким содержанием двухвалентных катионов, в основном Са и Mg (0,5... 1,0 %), между пектиновыми молекулами, содержащими свободные карбоксильные группы, могут возникать хелатные связи в виде солевых мостиков.

 

Рис. 9.4. Структура первичной клеточной стенки (по Альберсхейму):

1 — микрофибрилла целлюлозы: 2 — ксилоглюкан; 3 — главные

рамногалактуроновые цепи пектиновых веществ; 4 — боковые

галактановые цепи пектиновых веществ; 5— структурный белок

с арабинозными тетрасахаридами; 6— арабиногалактан

 

Вероятность образования солевых мостиков и степень этерификации полигалактуроновых кислот связаны обратной зависи­мостью. Солевые мостики способствуют упрочнению клеточных стенок и паренхимной ткани в целом.

Покровные ткани клубней картофеля, корнеплодов и других овощей характеризуются пониженной пищевой цен­ностью из-за концентрации в них клетчатки и гемицеллюлоз, поэтому при кулинарной обработке картофеля и большинства овощей эти ткани удаляют.


Дата добавления: 2014-10-31; просмотров: 128; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2022 год. (0.019 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты