КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Приближенное вычисление интеграловПриближенное вычисление определенного интеграла основано на геометрическом смысле интеграла и сводится к приближённому вычислению площади, ограниченной подынтегральной функцией f(x), прямыми x = a= x0, x = b = xn и осью OX (рис. 10.1). Интервал [a,b] делится на n равных частей длиной . Тогда значениям xi = xi–1 + h,
Для метода правых прямоугольников аналогично Метод трапеций. В методе трапеций определяется сумма площадей трапеций, основаниями которых являются ординаты y0, y1 и т.д., а высоты равны h. Погрешность метода оценивается как , где М – максимальное значение второй производной f(x) на отрезке [a,b]. Используя это соотношение можно определить количество точек, на которое делится отрезок, исходя из заданной погрешности. Чтобы вычислить определённый интеграл в приложении Mathcad, нужно записать интеграл, подынтегральную функцию и пределы интегрирования. Например: Для получения численного значения записывается выражение: z=
|