![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Гармонічні коливання і їх характеристикиКоливаннями називаються рухи або процеси, які характеризуються певною повторюваністю в часі. Коливальні процеси широко поширені в природі й техніці, наприклад, коливання маятника годинника, змінний електричний струм і т. д. При коливальному русі маятника змінюється координата його центра мас, у випадку змінного струму - коливаються напруга й струм у ланцюзі. Фізична природа коливань може бути різною, тому розрізняють коливання механічні, електромагнетні й ін. Однак різні коливальні процеси описуються однаковими характеристиками й однаковими рівняннями. Звідси випливає доцільність єдиного підходу до вивчення коливань різної фізичної природи. Коливання будуть вільними (або власними), якщо вони відбуваються за рахунок деякої енергії, переданої коливальній системі в початковий момент часу, при відсутності в наступні моменти часу будь-яких зовнішніх впливів на цю систему. Найпростішими коливаннями є гармонічні коливання, при яких коливна величина змінюється з часом за законом косинуса або синуса. Вивчення гармонічних коливань важливе з двох причин: 1) коливання, які зустрічаються у природі й техніці, при певних наближеннях є гармонічними; 2) різні періодичні процеси (процеси, які повторюються через рівні проміжки часу), можна подавати як суперпозицію гармонічних коливань. Гармонічні коливання деякої фізичної величини х описуються таким рівнянням
де А- максимальне значення коливної величини x, яке називається амплітудою коливань; Певні стани системи в процесі гармонічних коливань повторюються через однаковий проміжок часу Т, який називається періодом коливань. За цей час фаза коливання зростає на 2π, тобто
звідки
Величина, обернена до періоду коливань
виконана коливною системою за одиницю часу, називається частотою коливань. Прирівнюючи (2) і (3), одержимо
ω0 = 2
Одиницею частоти є герц (Гц), це частота такого періодичного процесу, при якому за 1 с відбувається одне повне коливання. Запишемо першу й другу похідні фізичної величини х гармонічного коливання, тобто визначимо швидкість і прискорення коливання:
тобто маємо гармонічні коливання тієї ж циклічної частоти. Амплітуди величин (4) і (5) відповідно дорівнюють Отже, у моменти часу, коли х = 0, З рівняння (5) одержуємо диференціальне рівняння гармонічних коливань (де враховано, що х = Acos (ωοt + φ)),
Рис. 1 Таким чином, розв’язком диференціального рівняння (6) є вираз (1). Гармонічні коливання можна зобразити графічно за допомогою методу обертання вектора амплітуди, або методу векторних діаграм.Для цього з довільної точки О, взятої на осі х, під кутом φ, який дорівнює початковій фазі коливання, відкладається вектор Рис. 2
Якщо цей вектор привести до обертання з кутовою швидкістю
де
Права частина рівняння (8) є рівнянням гармонічних коливань.
|