Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Сложение гармонических колебаний




Читайте также:
  1. Анализ режима периодических негармонических колебаний в в электрических цепях
  2. Анализ сезонных колебаний динамического ряда
  3. Античное (силлабо-метрическое) стихосложение
  4. Вопрос 29. Гармоническое изображение (временное и векторное) гармонических колебаний (общее представление и конкретный пример).
  5. Графическое изображение гармонических колебаний. Векторная диаграмма.
  6. Дифференциальное уравнение вынужденных колебаний
  7. ИЗУЧЕНИЕ КОЛЕБАНИЙ ПРУЖИННОГО МАЯТНИКА
  8. Изучение сезонных колебаний
  9. Изучение сезонных колебаний.
  10. Изучение сезонных колебаний.

Материальная точка может одновременно участвовать в несколь­ких колебаниях. В этом случае, чтобы найти уравнение и траекто­рию результирующего движения, следует сложить колебания. Наи­более просто выполняется сложение гармонических колебаний. Рас­смотрим две такие задачи.

Сложение гармонических колебаний, направленных по одной прямой. Пусть материальная точка одновременно участву­ет в двух колебаниях, происходящих вдоль одной линии. Анали­тически такие колебания выражаются следующими уравнениями:

Допустим, что частоты скла­дываемых колебаний одинаковы тогда результи­рующее смещение точки

Выполним такое сложение с по­мощью векторной диаграммы. Изо­бразим положение векторов и в начальный момент времени (рис. 5.9), углы между этими век­торами и осью ОХ равны начальным фазам слагаемых колебаний j01 и j02. Вектор — амплитуда результирующего колебания. Так как и вращаются с одинаковой угловой скоростью, то и сумма их — вектор — будет вращаться с той же угловой скоро­стью, т. е. результирующее движение является гармоническим с круговой частотой

(5.29)

Выразим амплитуду А этого колебания и начальную фазу j1 через заданные значения Применяя теорему косинусов к треугольнику, заштрихованному на рис. 5.9, получаем

Так как –cos b = -cos [p - (j02 - j01)] = cos (j02 - j01), то

(5.30)

Как видно из рис. 5.9, tg j равен отношению проекции на ось OY к проекции на ось ОХ, т. е. Аух. Учитывая, что проек­ция суммы равна сумме проекций, имеем

(5.31)

Таким образом, поставленная задача решена: по формулам (5.30) и (5.31) можно найти амплитуду и начальную фазу резуль­тирующего колебания. Из выражения (5.30) вытекают следую­щие частные случаи:

 

и тогда


т. е. амплитуда результирующего колебания равна сумме ампли­туд слагаемых колебаний, если разность начальных фаз равна четному числу p (рис. 5.10, а);

тогда

т. е. амплитуда результирующего колебания равна разности амп­литуд слагаемых колебаний, если разность начальных фаз равна нечетному числу p (рис. 5.10, б). В частности, при A1 = A2 имеем А = О, т. е. колебания нет (рис. 5.10, в). Это достаточно очевидно: если материальная точка участвует одновременно в двух колеба­ниях, имеющих одинаковую амплитуду и совершающихся в противофазе, то точка неподвижна. Если частоты складываемых ко­лебаний не одинаковы, то сложное колебание уже не будет гармо­ническим.



 

Интересен случай, когда частоты слагаемых колебаний мало отличают­ся друг от друга:

Результирующее колебание при этом подобно гармоническому, но с медлен­но изменяющейся амплитудой (ампли­тудная модуляция). Такие колебания называются биениями (рис. 5.11).

Сложение взаимно перпендикулярных гармонических колебаний.Пусть материальная точка одновременно участвует в двух колебаниях: одно направлено вдоль оси ОХ, другое — вдоль оси OY. Колебания заданы следующими уравнениями:

(5.34)

Допустим, что частоты колебаний одинаковы, т. е. тогда

(5.35)

Уравнения (5.35) задают траекторию движения материальной точки в параметрической форме. Если в эти уравнения подставлять разные значения t, то можно определить координаты х и у, а сово­купность координат и есть траектория. Более наглядно траекторию можно представить в виде зависимости у = f(x), для получения ко­торой следует исключить время из уравнений (5.35).Произведя ма­тематические преобразования, получим уравнение эллипса:



(5.36)

Таким образом, при одновременном участии в двух взаим­но перпендикулярных гармонических колебаниях одинаковой частоты материальная точка движется по эллиптической траектории (рис. 5.12).

Из выражения (5.36)вытекают некоторые частные случаи:

Это каноническая форма уравнения эллипса, соответствующая симметричному расположению его относительно осей координат (рис. 5.13, а).Из (5.37) при А1 = А2 = R (рис. 5.13, б) получаем уравнение окружности радиусом R:

(5.38)



 

 


 

тогда

(5.39)

и после преобразований

(5.40)

Это уравнение прямой линии, в которую вырождается эллипс [рис. 5.14, а соответствует знаку « + » в уравнении (5.40); рис. 5.14, б— знаку «-»].

При сложении взаимно перпендикулярных колебаний разных частот получаются различные траектории материальной точки, названные фигурами Лиссажу.

Вид фигур Лиссажу зависит как от соотношения амплитуд А1 и А2, так и от отношения частот w1/w2 и разности начальных фаз j01 - j 02 слагаемых колебаний (рис. 5.15):


 


 


Дата добавления: 2014-10-31; просмотров: 24; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.012 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты