![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Одновимірне хвильове рівняння. Швидкість поширення хвиль
Рівняння довільної хвилі є розв'язком рівняння, яке називається хвильовим. Для виведення цього рівняння скористаємось рівняння плоскої хвилі, яка поширюється в напрямку осі х. Розглянемо ділянку пружного середовища, яке характеризується модулем пружності Е (рис. 2). З рисунка видно, що виділений елемент має переріз S і довжину Δх. Під дією зовнішньої сили F виділена ділянка пружного середовища деформується на величину ΔU.
Рис. 2
Оскільки середовище є пружним, то для виділеної ділянки можна застосувати закон Гука
де Е – модуль Юнга;
F – зовнішня сила; S – площа виділеної ділянки пружного середовища в напрямі осі х.
В граничному випадку при
Якщо збуджувати поздовжню хвилю в деякому пружному середовищі, яким є наприклад стержень перерізом S з модулем Юнга Е, то на виділену ділянку будуть діяти дві сили (рис.3). Запишемо для цієї ділянки другий закон Ньютона
Сили в рівнянні (10) є пружними силами, а тому відповідно до рівняння (9) запишуться так
Якщо підставити ці сили (11) в другий закон Ньютона (10), то після деяких перетворень одержимо
де m ─ маса виділеної ділянки пружного середовища.
Масу виділеної ділянки пружного середовища можна виразити через об’єм і густину речовини стержня так
m = ρSΔx. (13)
Рис.3
З урахуванням значення маси (13) і нескладних перетворень рівняння (12) запишеться так
Розглянувши граничний випадок при якому
Рівняння (15) є лінійним диференціальним рівнянням другого порядку в частинних змінних. Розв’язком такого рівняння є уже відоме рівняння плоскої хвилі
Знайдемо другі частинні похідні за часом t і координатою х від рівняння (16)
Після підстановки відповідних похідних (17) в рівняння (15) та необхідних скорочень одержимо
Але оскільки
Таким чином швидкість поширення механічних хвиль у пружному середовищі залежить від пружних властивостей цього середовища і його густини
Оскільки модуль Юнга характеризує стиснення або розтяг пружного середовища, то одержана швидкість (20) є фазовою швидкістю лише поздовжніх хвиль. Фазова швидкість поперечних хвиль, які можуть існувати лише в твердому пружному середовищі, визначають заміною модуля Юнга в (20) на модуль зсуву G
Розрахунки показують, що в твердому середовищі модуль Юнга E майже на порядок перевищує величину модуля зсуву G, тому фазова швидкість поздовжньої хвилі тут більша за швидкість поперечної хвилі, тобто
Важливо відмітити, що для механічних хвиль, які мають велику довжину λ рівняння (15) і (19) будуть нелінійними. Якщо механічна хвиля поширюється в однорідному ізотропному середовищі, то хвильове рівнянням буде мати вигляд:
Для механічних хвиль властивий принцип суперпозиції. Це означає, що при накладанні механічних хвиль відсутнє їх спотворення.
|