КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Дифференциальные уравнения движения системы.Рассмотрим систему, состоящую из п материальных точек. Выделим какую-нибудь точку системы с массой . Обозначим равнодействующую всех приложенных к точке внешних сил (и активных и реакций связей) через , а равнодействующую всех внутренних сил - через . Если точка имеет при этом ускорение , то по основному закону динамики . Аналогичный результат получим для любой точки. Следовательно, для всей системы будет: Эти уравнения, из которых можно определить закон движения каждой точки системы, называются дифференциальными уравнениями движения системы в векторной форме. Уравнения являются дифференциальными, так как ; входящие в правые части уравнений силы будут в общем случае зависеть от времени, координат точек системы и их скоростей. Проектируя на какие-нибудь координатные оси, мы можем получить дифференциальные уравнения движения системы в проекциях на эти оси. Полное решение основной задачи динамики для системы состояло бы в том, чтобы, зная заданные силы, проинтегрировать соответствующие дифференциальные уравнения и определить таким путем закон движения каждой из точек системы в отдельности. Однако такой путь решения обычно не применяется по двум причинам. Во-первых, этот путь слишком сложен и почти всегда связан с непреодолимыми математическими трудностями. Во-вторых, в большинстве случаев при решении задач механики бывает достаточно знать некоторые суммарные характеристики движения системы вцелом, а не движение каждой из ее точек в отдельности. Эти суммарные характеристики определяются с помощью общих теорем динамики системы, к изучению которых мы и перейдем. Основная роль уравнений состоит в том, что они, или следствия из них, являются исходными для получения соответствующих общих теорем.
|