Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Теорема о движении центра масс.




В ряде случаев для определения характера движения системы (особенно твердого тела), достаточно знать закон движения ее центра масс. Чтобы найти этот закон, обратимся к уравнениям движения системы и сложим по­членно их левые и правые части. Тогда получим:

Преобразуем левую часть равенства. Из формулы для радиус-вектора центра масс имеем:

.

Беря от обеих частей этого равенства вторую производную по времени и замечая, что производная от суммы равна сумме произ­водных, найдем:

или 28

где -ускорение центра масс системы. Так как по свойству вну­тренних сил системы , то, подставляя все найденные значения, получим окончательно:

Уравнение и выражает теорему о движении центра масс системы: произведение массы системы на ускорение ее центра масс равно геометрической сумме всех действующих на систему внешних сил. Сравнивая с уравнением дви­жения материальной точки, получаем другое вы­ражение теоремы: центр масс системы движется как мате­риальная точка, масса которой равна массе всей системы и к которой приложены все внешние силы, действующие на систему.

Проектируя обе части равенства на координатные оси, получим:

Эти уравнения представляют собою дифференциальные уравнения движения центра масс в проекциях на оси декартовой системы координат.

Значение доказанной теоремы состоит в следующем.

1) Теорема дает обоснование методам динамики точки. Из урав­нений видно, что решения, которые мы получаем, рассмат­ривая данное тело как материальную точку, определяют закон движения центра масс этого тела, т. е. имеют вполне конкрет­ный смысл.

В частности, если тело движется поступательно, то его движе­ние полностью определяется движением центра масс. Таким образом, поступательно движущееся тело можно всегда рассматривать как материальную точку с массой, равной массе тела. В остальных слу­чаях тело можно рассматривать как материальную точку лишь тогда, когда практически для определения положения тела достаточно знать положение его центра масс.

2) Теорема позволяет при определении закона движения центра масс любой системы исключать из рассмотрения все наперед неиз­вестные внутренние силы. В этом состоит ее практическая ценность.


Поделиться:

Дата добавления: 2014-12-23; просмотров: 222; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты