КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Средне арифметические и средне гармонические индексы и их применение в статистикеВ зависимости от методологии расчета индивидуальных и сводных индексов различают средние арифметические и средние гармонические индексы. Другими словами, общий индекс, построенный на базе индивидуального индекса, принимает форму среднего арифметического или гармонического индекса. Идея построения сводного индекса в виде средней величины из индивидуальных (групповых) индексов вполне естественна, ведь сводный индекс является общей мерой, характеризующей среднюю величину изменения индексируемого показателя, и его величина должна зависеть от величин индивидуальных индексов. А критерием правильности построения сводного индекса в форме средней величины (среднего индекса) является его тождественность агрегатному индексу. Преобразование агрегатного индекса в средний из индивидуальных (групповых) индексов производится следующим образом: либо в числителе, либо в знаменателе агрегатного индекса индексируемый показатель заменяется его выражением через соответствующий индивидуальный индекс. Если такую замену сделать в числителе, то агрегатный индекс будет преобразован в средний арифметический, если же в знаменателе – то в средний гармонический из индивидуальных индексов. Формула свободного индекса: Средний арифметический индекс физического объема, где весами служит стоимость отдельных видов продукции в базисном периоде. В наличии имеется информация о динамике объема выпуска каждого вида продукции (iq) и стоимости каждого вида продукции в отчетном периоде (p1q1). Для определения общего изменения выпуска продукции предприятия в этом случае удобно воспользоваться формулой Пааше: Числитель формулы можно получить суммированием величин p1q1, а знаменатель – делением фактической стоимости каждого вида продукции на соответствующий индивидуальный индекс физического объема продукции, т. е. делением p1q1/ iq Таким образом получаем формулу среднего взвешенного гармонического индекса физического объема. Применение той или иной формулы индекса физического объема (агрегатного, среднего арифметического и среднего гармонического) зависит от имеющейся в распоряжении информации. Также нужно иметь в виду, что агрегатный индекс может быть преобразован и рассчитан как средний из индивидуальных индексов только при совпадении перечня видов продукции или товаров (их ассортимента) в отчетном и базисном периодах.
▲ 39 Индексы ценные и базисные, с постоянными и переменными весами. 34 Индексы ценные и базисные, с постоянными и переменными весами. ▲ 40 Экономическое содержание индексов. ▲ 41 Взаимосвязь индексов и выявление с их помощью роли отдельных факторов динамики сложных явлений. 36 Взаимосвязь индексов и выявление с их помощью роли отдельных факторов динамики сложных явлений.
|