КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Тема 4. Распределение молекул идеального газа по скоростям.В газе, находящемся в состоянии равновесия при определенной температуре, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям. Максвелл установил, что это распределение для идеального газа описывается некоторой функцией , называемой функцией распределения молекул газа по скоростям. Если разбить диапазон скоростей молекул на малые интервалы, равные , то на каждый интервал скорости будет приходиться некоторое число молекул , имеющих скорость, заключенную в этом интервале. Функция определяет относительное число молекул , скорости которых лежат в интервале от до , т. е. , откуда . Применяя методы теории вероятностей, Максвелл нашел вид этой функции: , где – масса одной молекулы газа. График этой функции приведен на рис. 2. Рис. 2 Относительное число молекул , скорости которых лежат в интервале от до , соответствует площади заштрихованной на рис. 2 полоски. Площадь под всей кривой распределения равна единице. Это означает, что функция удовлетворяет условию нормировки: . Скорость, при которой функция распределения молекул идеального газа по скоростям максимальна, называется наиболее вероятной скоростью : . Из этой формулы следует, что при повышении температуры максимум функции распределения молекул по скоростям (рис. 3) смещается вправо. При этом величина максимума функции распределения молекул по скоростям с повышением температуры уменьшается (рис. 3). Рис. 3 Кроме наиболее вероятной скорости , на рис. 2 приведены также средняя арифметическая скоростьмолекул и средняя квадратичная скоростьмолекул , которые определяются по формулам: ; .
|