Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Решение. Разложим нагрузку на вертикальную (рис




Разложим нагрузку на вертикальную (рис. 5.7, а) и горизонтальную (рис. 5.7, в) составляющие и построим эпюры и (рис. 5.7, б, г). Чтобы правильно поставить знаки изгибающих моментов, необходимо на рисунках показывать направление осей и , так как в соответствии с правилом знаков для изгибающего момента в задачах сложного сопротивления знак момента зависит от направления осей. Эпюры моментов строим со стороны растянутых волокон в той плоскости, в которой действует нагрузка. По эпюрам выбираем опасные сечения. В рассматриваемом примере их два: сечение , в котором действуют кН×м и кН×м, и сечение с изгибающими моментами кН×м и кН×м.

Условие прочности в опасных точках двутавра имеет вид (5.6). Поскольку отношение моментов сопротивления зависит от номера двутавра, а он неизвестен, примем это отношение условно[4] равным 10.

  Рис. 5.7. Эпюры изгибающих моментов: а, б – от вертикальной составляющей нагрузки; в, г – от горизонтальной составляющей нагрузки; д, е – от единичной силы  

Тогда условие прочности (5.6) в опасных точках сечения примет вид

,

где допускаемое напряжение для стали принято = 160 МПа; величины изгибающих моментов переведены из кН×м в кН×см. Из написанного условия прочности найдем необходимый момент сопротивления

см3.

По сортаменту прокатной стали подбираем номер двутавра. Для двутавра № 50 с такими характеристиками: см3 и см3 условие прочности в опасных точках сечения

кН/см2

не выполняется, поэтому увеличиваем двутавр. Проверим прочность для двутавра № 55, у которого см3 и см3:

кН/см2.

Убедимся в том, что условие прочности выполняется и в опасных точках опасного сечения :

кН/см2.

Обратите внимание на величину напряжений от изгибающего момента , действующего в горизонтальной плоскости, которую показывает второй член в сумме. Видно, что, несмотря на то, что в рассмотренном примере существенно меньше , напряжения от больше, чем напряжения от (или они примерно одинаковы). Это говорит об опасности изгиба в горизонтальной плоскости, особенно для двутавров, у которых .

Найдем перемещение точки . Будем искать по формуле (5.7) сначала вертикальную составляющую перемещения, вызванную вертикальной составляющей нагрузки. Формулу Максвелла – Мора (5.7) интегрируем по правилу Верещагина, перемножая эпюры и (рис. 5.7, б, е). Если хотя бы одна эпюра на участке имеет форму трапеции, используем для перемножения правило трапеций [6].

кН×м3.

Аналогично определим по (5.8) горизонтальную составляющую перемещения[5], перемножая эпюры и (рис. 5.7, г, е).

кН×м3.

Положительные знаки перемещений свидетельствуют о том, что перемещения происходят по направлениям единичных сил, т. е. вертикальное перемещение – вниз (по направлению оси ), горизонтальное – по направлению оси . Сосчитаем найденные составляющие перемещения (в см), разделив их на соответствующие жесткости.

кН×см2,

кН×см2,

см,

см.

Из сравнения величин и видно, что горизонтальная составляющая перемещения, даже при небольшой горизонтальной нагрузке, много больше (особенно для двутавра) вертикальной составляющей.

Выполним последнюю часть задачи. Нарисуем сечение балки в масштабе, покажем на нем нейтральную линию и полное перемещение. Уравнение нейтральной линии (5.4) в опасном сечении С имеет вид[6]

или . Нейтральная линия, построенная по этому уравнению, и эпюра нормальных напряжений в сечении показаны на рис. 5.8. Знаки напряжений соответствуют положительным знакам изгибающих моментов. Угловые точки 1, 1¢ – это опасные точки сечения, в которых мы ранее находили напряжения.

Рис. 5.8. Эпюра напряжений в опасном сечении С и перемещение точки С

Найдем угол (см. рис. 5.8) между нейтральной линией и осью :

.

Отложим в масштабе найденные ранее вертикальную и горизонтальную составляющие перемещения с учетом их направления. Полное перемещение точки – отрезок на рис. 5.8 равен геометрической сумме и . Угол между полным перемещением и осью

.

Таким образом, угол между полным перемещением и нейтральной линией , что близко к .

 

 


Поделиться:

Дата добавления: 2014-12-30; просмотров: 139; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты