Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Для расчета средней квадратичной скорости выражение (1) удобно преобразовать, умножив числитель и знаменатель на NA.




Читайте также:
  1. D. 20.1.1). - Завещание есть правомерное выражение воли, сделанное торжественно для того, чтобы оно действовало после нашей смерти.
  2. I. средняя скорость; II. мгновенная скорость; III. вектор скорости, выраженный через проекции на оси; IV. величина (модуль) скорости.
  3. Rооt(Выражение, Имя_переменной)
  4. Абсолютные скорости изменения критериев оценки УБП
  5. Агрегатный индекс может быть преобразован а среднеарифметический и среднегармонический индекс при отсутствии исходной информации для расчета агрегатной формы индекса.
  6. Алгоритм проверочного расчета вала
  7. Алгоритм расчета индивидуального индекса
  8. Алгоритм расчета общего индекса
  9. АЛГОРИТМИЗАЦИЯ ВЫЧИСЛИТЕЛЬНЫХ ПРОЦЕССОВ
  10. Амортизация ОФ, методы расчета амортизации.

<uкв>= ;

<uкв>=13,7×102 м/с – для гелия;

<uкв>=5,17×102 м/с – для азота.

Средняя полная энергия молекулы зависит от числа степеней свободы молекулы:

<E0>= .

Полная кинетическая энергия всех молекул, равная для идеального газа его внутренней энергии, может быть найдена как произведение Е0 на число всех молекул:

Е=U=Е0×N; N= .

Гелий – одноатомный газ Þ i=3, тогда <E0>=6,2×10-21 Дж.

Азот – двухатомный газ Þ i=5, тогда <E0>=10,4×10-21 Дж.

Полная энергия всех молекул

Е= .

Для гелия W=93,5×103 Дж; для азота W=22,3×103 Дж.

Ответ: для гелия W=93,5×103 Дж; для азота W=22,3×103 Дж

 

 

Задача 3 Рассчитать среднюю длину свободного пробега молекул азота, коэф­фициент диффузии и вязкость при давлении р=105 Па и температуре17 0С. Как изменятся найденные величины в результате двукратного увеличения объема газа: 1) при постоянном давлении; 2) при постоянной температуре? Эффективный диаметр молекул азота d=3,7×10-8см.

p = 10-3Па T = 300К V2 = 2V1 1) p – const 2) T – const d = 3,7×10-10 м Решение Средняя длина свободного пробега и коэффициенты переноса могут быть рассчитаны по следующим формулам: ; (1) ; (2) , (3) где n – концентрация молекул газа; <u> - средняя скорость молекулы; m0 – масса одной молекулы;
l - ? D - ? h - ?

 

Концентрацию молекул можно определить из уравнения p=nkT:

n=p/kT подставим в уравнение (1):

6,5×10-8 м.

Средняя скорость <u>= =470 м/с;

Тогда D=1×10-5 м2/с.

Для расчета h подставим (1) в (3):

1,2×10-5 .

Как видно из выражения (1), длина свободного пробега зависит только от концентрации молекул. При двукратном увеличении объема концентрация уменьшится вдвое. Следовательно, при любом процессе l2/l1=2.

В выражение для коэффициента диффузии входит не только длина свободного пробега, но и средняя скорость. Тогда:

При р=const объем прямо пропорционален температуре: Т21=V2/V1=2, тогда D2/D1= .

При Т=const D2/D1=l2/l1=2.

Вязкость зависит от скорости молекул, следовательно, и от температуры, т.е.



,

при р=const ;

при Т=const .

Ответ: l=6,5×10-8 м; D=1×10-5 м2/с; h=1,2×10-5 .

 

Задача 4 Пылинки массой 10-18 г. взвешены в воздухе. Определить толщину слоя воздуха, в пределах которого концентрация пылинок различается не более чем на 1%. Температура воздуха во всем объеме одинакова: Т=300 К.

 

m1 = 10-21 кг T = 300 К Решение При равновесном распределении пылинок их концентрация зависит только от координаты z по оси, направленной вертикально. По распределению Больцмана: n=n0×e-u/kT=n0×e-mgz/kT. (1)
DZ - ?

 

Дифференцируя выражение (1) по z, получим

dn=-n0× ×e-mgz/kT×dz.

Так как n0×e-mgz/kT=n, то dn=- ×n×dz. Отсюда dz= .

Знак «-» показывает, что положительным изменениям координаты (dz>0) соответствует уменьшение относительной концентрации (dn<0). Знак «-» опускаем и заменяем dz и dn конечными приращениями Dz и Dn:

.

Dn/n=0,01 по условию задачи. Подставляя значения, получим Dz=4,23 мм.

Ответ: Dz=4,23 мм

 

Задача 5 Вычислить удельные теплоемкости сv и сp смеси неона и водорода. Массовые доли газов w1=0,8 и w2=0,2. Значения удельных теплоемкостей газов – неон: сv=6,24 ; cp=1,04 ; водород: сv=10,4 ; сp=14,6 .



w1 = 0,8 w2 = 0,2 cV1 = 6,24 кДж/кг × К cp1 = 1,04 кДж/кг × К cV2 = 10,4 кДж/кг × К cp2 = 14,6 кДж/кг × К Решение Теплоту, необходимую для нагревания смеси на DТ, выразим двумя соотношениями: , (1) где сv – удельная теплоемкость смеси, m1 – масса неона, m2 – масса водорода, и , (2) где cv1 и сv2 – удельные теплоемкости неона и водорода соответственно.
cp - ? cv - ? Приравняв правые части выражений (1) и (2) и разделив обе части полученного равенства на DТ, найдем:

,

откуда .

Отношения и выражают массовые доли неона и водорода соответственно. С учетом этих обозначений последняя формула примет вид:

,

Подставляя значения, получим сv=2,58×103 .

Таким же образом получим формулу для вычисления удельной теплоемкости смеси при постоянном давлении:

Подставляя значения, получим ср=3,73103 .

Ответ: сv=2,58×103 ; ср=3,73103 .

 


Дата добавления: 2015-01-01; просмотров: 11; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2022 год. (0.011 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты