КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
КОНТРОЛЬНАЯ РАБОТА № 4Задача 1. 1. В коробке 15 луковиц гладиолусов, из которых 7 луковиц красных гладиолусов, 8 луковиц черных. Какова вероятность того, что из 10 наудачу выбранных луковиц 6 окажутся луковицами черных гладиолусов?
2. Из 12 луковиц, среди которых 5 луковиц красных тюльпанов и 7 желтых, наудачу выбирают 4. Какова вероятность того, что из них вырастут два красных и два желтых тюльпана?
3. В помете 2 рыжих щенка и 5 черных. Наудачу выбирают трех щенков. Какова вероятность того, что один из них рыжий?
4. Из 12 крыс 8 получили некоторую дозу облучения. Какова вероятность того, что из 6 наудачу выбранных крыс 4 облучены?
5. В популяции из 30 плодовых мушек 10 имеют красные глаза. Наудачу выбирают 5 мушек. Какова вероятность того, что одна из них имеет красные глаза?
6. В 15 пакетиках находится пыльца, собранная с 15 цветков гороха, из которых 5 красных, а остальные – белые. Наудачу выбирают 3 пакетика. Какова вероятность того, что в двух из них пыльца красных цветков?
7. Среди 12 цыплят 5 курочек. Какова вероятность того, что из выбранных наудачу 4 цыплят 2 курочки?
8. Из данных 20 мужчин 1 страдает дальтонизмом. Какова вероятность того, что при случайном выборе 10 мужчин из этих 20 один страдает дальтонизмом?
9. Из колоды в 36 карт выбирают 4 карты. Какова вероятность того, что 3 из них красные?
10. Из 15 вакцинированных мышей у 12 сформировался иммунитет. Какова вероятность того, что из 5 случайно выбранных из группы вакцинированных мышей 4 имеют иммунитет?
11. На ферме из 12 коров 3 больные. Какова вероятность того, что из 4 выбранных наудачу коров 1 больная?
12. Из 15 арбузов 3 неспелых. Какова вероятность того, что из 3 выбранных арбузов 2 спелых?
13. Из 9 лабораторных мышей 7 вакцинированы. Какова вероятность того, что из 5 наудачу выбранных мышей 3 вакцинированы?
14. Среди 10 доноров 4 имеют первую группу крови. Какова вероятность того, что из двух наудачу выбранных доноров один имеет первую группу крови?
15. Среди 15 цветных мышей 10 имеют генотип Сс, а 5 – генотип СС. Какова вероятность того, что из 3 выбранных мышей 2 имеют генотип Сс?
16. В аквариуме из 12 рыбок 4 золотых. Какова вероятность того, что из случайно отловленных 3 рыбок 1 золотая?
17. Среди 10 одинаковых пробирок без этикеток 4 пробирки со штаммом типа «А» и 6 со штаммом типа «В». Какова вероятность того, что из 3 случайно выбранных пробирок 2 со штаммом типа «А»?
18. В питомнике из 10 обезьян 2 имеют отрицательный резус-фактор. Какова вероятность того, что из наудачу выбранных обезьян 1 имеет отрицательный резус-фактор?
19. Среди 6 котят 2 кота. Какова вероятность того, что из двух выбранных наудачу котят 1 кот?
20. Среди 12 мышей 8 короткохвостных. Наудачу выбирают 3 мыши. Какова вероятность того, что 2 из них короткохвостные?
Задача 2.В задачах 21-40. Два автомата производят детали, которые поступают на общий конвейер. Вероятность изготовления стандартной детали на первом автомате равна р1 , а на втором – р2. Производительность второго автомата в n раз больше, чем первого. Найти вероятность того, что наудачу взятая с конвейера деталь стандартна. Какова вероятность, что стандартная деталь изготовлена первым автоматом?
Задача 3.В задачах 41-60. Задан закон распределения дискретной случайной величины . Найти: 1) значение параметра а; 2) математическое ожидание М(Х); 3) дисперсию Д(Х). Построить многоугольник распределения.
Задача 4. В задачах 61-80. Случайная величина Х задана функцией распределения. Требуется: 1) найти функцию плотности вероятности f(x); 2) найти математическое ожидание и дисперсию случайной величины Х; 3) построить графики функций F(x) и f(x). 61. F(x)=
62. F(x)= 63. F(x)=
64. F(x)=
65. F(x)=
66. F(x)=
67. F(x)=
68. F(x)= 69. F(x)=
70. F(x)=
71. F(x)=
72. F(x)=
73. F(x)=
74. F(x)= 75. F(x)=
76. F(x)=
77. F(x)=
78. F(x)=
79. F(x)=
80. F(x)=
Задача 5.В задачах 81-90. Предполагаем, что масса яиц – нормально распределенная случайная величина Х, с математическим ожиданием а и средним квадратическим отклонением s . В заготовку принимают яйца от х1 до х2 граммов. Определить: а) вероятность того, что наудачу взятое яйцо пойдет в заготовку; б)вероятность того, что абсолютная величина отклонения Х-а окажется меньше d; в) по правилу трех сигм найти наибольшую и наименьшую границы предполагаемой массы яйца.
В задачах 91-100. Известно, что рост людей, проживающих в данной местности, есть случайная величина Х, распределенная по нормальному закону со средним значением а и средним квадратическим отклонением s. Найти: а) вероятность того, что наудачу выбранный человек имеет рост от х1 до х2 см; б) вероятность того, что абсолютная величина отклонения Х-а окажется меньше d; в) по правилу трех сигм найти наибольшую и наименьшую границы предполагаемого роста человека.
Составители: Бабин Владислав Николаевич Грунина Мария Викторовна Журавская Светлана Александровна Овчинникова Валентина Афанасьевна Шефель Валентина Гавриловна
|