Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Док-ть сходимость посл-ти (1)




Для док-ва введем вспом-ю ф-цию y=(1+x)^1/x, x>0 Ясно что при знач. x=1,1/2,1/3,…,1/n,… значение ф-ции y совпадает с соответствующими эл-ми (1).

Док-м что ф-ция у монотонно убывает и огран. сверху => монотонное возр. посл-ти (1) и ограниченность ее сверх. Поскольку lg x явл-ся монотонно возр., но монотонное убыв. ф-ции у и ее огранич. сверху эквивалентны том, что ф-ция lgy, которая равняется 1/хlg(1+x) (2) имеет те же самые св-ва, т.е. 0<x1<x2, то тогда 1/x1*lg(1+x1)>1/x2* *lg(1+x2) (3). Огранич. сверху $ M:1/xlg(1+x)£lgM "x>0 (4). Возьмем любую лин. ф-цию вида y=kx которая превосходит lg(1+x) при всех x>0.

tga1=(lg(1+x1))/x1 a1>a2=>tga1>tga2

tga2=(lg(1+x2))/x2

Поскольку a1>a2, то tga1>tga2, а это равносильно равенству (3). Поскольку y>lg(1+x) "x>0 => kx>

>lg(1+x) "x>0

Принимая во внимания ф-ции у с пос-ть xn приходим к нужному утверждению. Число е явл-ся неизбежным спутником динамических процессов: почти всегда показатели изменяющиеся во времени характеризующие такие процессы зависят от времени через экспонициальную ф-цию y=e^x и ее модификации.

Пр-р: если ставка сл-ных % равна r и инвестор положил в банк первоначальный вклад равный Р причем % начисляются m раз в год (r- годовая ставка) тогда через n- лет наращенная сумма нач-ся по ф-ле сл. % при m кратном их начислению.

Sn=P(1+r/m)^mn (5) Предположим теперь % нач-ся непрерывным образом, т.е. число периодов нач-ния неограничено ув-ся. Мат-ки это соотв-ет тому, что выражение (5) надо р-равать, как общий член посл-ти Xm, а непрерывному нач-нию соот-ет наращенная ф-ция lim(n®¥)P(1+r/m)^mn=Pe^rn

Lg(e)x имеет спец. Обозначение lnx.

Принцип вложенных отрезков

Пусть на числовой прямой задана посл-ть отрезков [a1,b1],[a2,b2],…,[an,bn],…

Причем эти отрезки удовл-ют сл. усл.:

1) каждый посл-щий вложен в предыдущий, т.е. [an+1,bn+1]Ì[an,bn], "n=1,2,…;

2) Длины отрезков ®0 с ростом n, т.е. lim(n®¥)(bn-an)=0. Посл-ть с указанными св-вами наз-ют вложенными.

Теорема Любая посл-ть вложенных отрезков содержит единную т-ку с принадлежащую всем отрезкам посл-ти одновременно, с общая точка всех отрезков к которой они стягиваются.

Док-во {an}-посл-ть левых концов отрезков явл. монотонно не убывающей и ограниченной сверху числом b1.

{bn}-посл-ть правых концов монотонно не возрастающей, поэтому эти посл-ти явл. сходящимися, т.е. сущ-ют числа с1=lim(n®¥)an и с2=lim(n®¥)bn => c1=c2 => c - их общее значение. Действительно имеет предел lim(n®¥)(bn-an)= lim(n®¥)(bn)- lim(n®¥)(an) в силу условия 2) o= lim(n®¥)(bn-an)=с2-с1=> с1=с2=с

Ясно что т. с общая для всех отрезков, поскольку "n an£c£bn. Теперь докажем что она одна.

Допустим что $ другая с‘ к которой стягиваются все отрезки. Если взять любые не пересекающиеся отрезки с и с‘, то с одной стороны весь “хвост” посл-тей {an},{bn} должен нах-ся в окрестностях т-ки с‘‘(т.к. an и bn сходятся к с и с‘ одновременно). Противоречие док-ет т-му.

Принцип вложенных отрезков

Т-ма. Любая пос-ть вложенных отрезков содержит единств. т-ку сÎвсем отрезкам посл-ти одновременно, к которой они стягиваются.

Док-во. {an} пос-ть левых концов явл. монотонно неубыв. И огран. свеху числом b1; посл-ть правых концов {bn} монотонно не возр. и ограничена снизу а1, поэтому эти посл-ти сходящ., т.е. $ числа c1=lim(n®¥)an и c2=lim(n®¥)bn.

Докажем что с1=с2 и сл-но их общая знач. может обозначить через с. Действ. имеется предел lim(n®¥)(bn-an)= lim(n®¥)bn® lim(n®¥)an=c2-c1=c ясно что с общая для всех отрезков поскольку для " n an£c£bn. Осталось доказать единство данной т-ки (от противного). Допустим есть c‘¹c к которой стягиваются все отрезки. Если взять любые пределы окр. точек с и с‘, то с одной стороны весь “хвост” {an}, {bn}, должен нах-ся в окрестности т-ки с, а др. в с‘, т.к. an и bn® c и c‘ одновр. Противореч. док-ет т-му.

 

7.Ф-ции одной переменной

Если задано правило по которому каждому значению перем. Величины х из мн-ва Х ставится соответствие 1 значению перем. У то в этом случае говорят, что задана ф-ция 1-й переменной.

Y=f(x); x –аргумент независ. перемен., y- зав. пер.

X=Df=D(f) y={y;y=f(x),xÎX} x1ÎX1, y1=f(x1)

1) аналит. способ; 2)Табличный способ;

3) Графический способ;

4)Min и max ф-ции: ф-ция f(x) ограничена, если огран. ее мн-во знач У, т.е. $ m,M: m£f(x)£M "xÎX

m£f(x) "xÎX => огр. сн.; f(x)£M, "xÎX=> огр. св.

 

Обратные ф-ции

Если задано правило по которому каждому значению yÎY ставится в соответствие ® ед. знач. х, причем y=f(x), то в этом случае говорят, что на мн-ве Y определена ф-ция обратная ф-ции f(x) и обозначают такую ф-цию x=f^-1(y).

 


Поделиться:

Дата добавления: 2015-01-10; просмотров: 81; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты