Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Классификация т-ки разрыва




Все т-ки р-рыва делятся на 3 вида: т. устранимого р-рыва; точки р-рыва 1-го , и 2-го рода.

а) если в т-ке х0 $ оба односторонних предела, которые совпадают между собой f(x0+)= f(x0-), но ¹ f(x0), то такая т-ка наз-ся точкой устранимого р-рыва.

Если х0 т-ка устранимого р-рыва, то можно перераспределить ф-цию f так чтобы она стала непр. в т-ке х0. Если по ф-ции f построить новую ф-цию положив для нее знач. f(x0)= f(x0-)=f(x0+) и сохранить знач. в др. т-ках, то получим исправл. f.

б) если в т-ке х0 $ оба 1-стороних предела f(x0±), которые не равны между собой f(x0+)¹f(x0-), то х0 наз-ся т-кой р-рыва первого рода.

в) если в т-ке х0 хотя бы 1 из односторонних пределов ф-ции не $ или бесконечен, то х0 наз-ся т-кой р-рыва 2-го рода.

При исслед. Ф-ции на непр. классификации возможных т-к р-рыва нужно применять во внимание сл. замечания:

1) Все элементарные ф-ции непрер. во внутренних т-ках своих областей определения => при исл. элементарных ф-ций нужно обращать внимание на гранич. т-ки обл-ти опр-ния.

2) Если ф-ция задана кусочно, т.е. различными соотношениями на частях своей обл. опр., то подозрительными на разрыв явл. граничные т-ки частей обл-ти опр.

3) Св-ва непр. ф-ций. Многие св-ва непр. ф-ций легко понять опираясь на их геометр. св-ва:

график непр. ф-ции на пр-ке D представляет сплошную(без р-рывов) кривую на пл-тях и след-но может отображена без отрыва ручки от бумаги.

I) Ф-ция непр. в т-ке х0 обязательно ограничена в окрестностях этой т-ки.(св-во локал. огранич-ти)

Док-во использует опр-ние на языке e и d. Если f непр. в т-ке х0 то взяв любое e>0 можно найти d>0 ½f(x)-f(x0)½<e при ½х-х0½<d ~ f(x0)-e<f(x)<f(x0)+e в окрестности в т-ке х0.

II) Св-ва сохранения знака Если f(x) непр. в т-ке х0 и f(x0)¹0 то $ окрестность этой т-ки в которой ф-ция принимает тот же знак что и знак х0.

III)Теорема о промежуточных знач. ф-ции f(x) непр. на отрезке [a,b] и f(a)=A, f(b)=B причем A¹B => CÎ(A,B) $ cÎ(a,b):f(c)=C f(c)=f(c‘)=f(c‘‘).

IV)Теорема о прохожд. непр. ф-циичерез 0. Если f(x) непр. на отрезке (a,b) и принимает на концах этого отрезка значение разных знаков f(a) f(b), то $ т-ка сÎ(a,b).

Док-во Одновременно содержит способ нах-ния корня ур-ния f(x0)=0 методом деления отрезка пополам. f(d)=0 c=d Т-ма доказана.

Пусть f(d)¹0 [a,d] или [d,b] ф-ция f принимает значение разных знаков. Пусть для определ-ти [a,d] обозначим через [a1,b1]. Разделим этот отрезок на 2 и проведем рассуждение первого шага док-ва в итоге или найдем искомую т-ку d или перейдем к новому отрезку [a2,d2] продолжая этот процесс мы получим посл-ть вложения отрезков [a1,b1]>[a2,b2] длинна которых (a-b)/2^n®0, а по т-ме о вл-ных отрезков эти отрезки стягиваются к т-ке с. Т-ка с явл. искомой с:f(c)=0. Действительно если допустить, что f(c)¹0 то по св-ву сохр. знаков в некоторой d окрестности, т-ке с f имеет тот же знак что и значение f(c) между тем отрезки [an,bn] с достаточно N попабают в эту окрестность и по построению f имеет разный знак на концах этих отрезков.

 

Непр. ф-ции на пр-ке

f непр. в т-ке х0 => f непрер. в т-ке х0 и f(x0)¹0 => f непр. на [a,b] и f(x)*f(b)=0 (f(x)*f(b)>0 в окр-ти х0) => $ сÎ(a,b). f(c)=0 сл-но 2 св-ва непр. ф-ции на отрезке обоснованны.

Т-ма 1(о огран. непр. ф-ции на отрезке). Если f(x) непр. на [a,b], тогда f(x) огран. на этом отрезке, т.е. $ с>0:½f(x)½£c "xÎ(a,b).

Т-ма 2( о $ экстр. непр. ф-ции на отр.). Если f(x) непр. на [a,b], тогда она достигает своего экстр. на этом отрезке, т.е. $ т-ка max X*:f(x*)³f(x) "xÎ[a,b], т-ка min X_:f(x_)£f(x) "xÎ[a,b].

Теорема ВЕЙЕРШТРАССА. Эти теремы неверны если замкнутые отрезки заменить на др. пр-ки

Контрпример 1. f(x)=1/2 на (0;1] ® f – неогр. на (0;1] хотя и непрерывны.

Контрпример 2. f(x)=x; на (0;1) f(x) – непр. inf(xÎ(0;1))x=0, но т-ки x_Î(0;1):f(x_)=0, т-ки x*, хотя sup(xÎ(0;1))x=1

Док-во т-мы 1. Используем метод деления отрезка пополам. Начинаем от противного; f неогр. на [a,b], разделим его, т.е. тогда отрезки [a;c][c;b] f(x) неогр.

Обозн. [a1,b1] и педелим отрез. [a2,b2], где f-неогр. Продолжая процедуру деления неогр. получаем послед. влож. отрезки [an;bn] котор. оттяг. к т-ке d (d=c с надстройкой) из отрезка [a,b], общее для всех отр. Тогда с одной стороны f(x) неогр. в окр-ти т-ки d на конц. отрезка [an,bn], но с др. стороны f непр. на [a,b] и => в т-ке d и по св-ву она непр. в некоторой окрестности d. Оно огран. в d => получаем против. Поскольку в любой окр-ти т-ки d нах-ся все отрезки [an;bn] с достаточно большим 0.

Док-во т-мы 2. Обозначим E(f) – множиством значений ф-ии f(x) на отр. [a,b] по предыд. т-ме это мн-во огран. и сл-но имеет конечные точные грани supE(f)=supf(x)=(при хÎ[a,b])=M(<¥). InfE(f)= inff(x)=m(m>-¥). Для опр. докажем [a,b] f(x) достигает макс. на [a,b], т.е. $ х*:f(x)=M. Допустим противное, такой т-ки не $ и сл-но f(x)<M "xÎ[a,b] рассмотрим вспомогат. ф-цию g(x)=1/(M-f(x) при хÎ[a,b]. g(x) – непр. как отношение 2-х непр. ф-ций и то знач. 0 согластно т-ме 1 g(x)- огран. т.е. $ c>0

!0<g(x)£c g³0, на [a,b] – 1/(M-f(x))£c => 1£c(M-f(x)) => f(x) £M-1/c "xÎ[a,b]

Однако это нер-во противор., т.к. М-точная верхн. грань f на [a,b] а в правой части стоит “C”

Следствие: если f(x) непр. [a,b]тогда она принимает все знач. заключ. Между ее max и min, т.е. E(f)=[m;M], где m и M –max и min f на отрезке.

 


Поделиться:

Дата добавления: 2015-01-10; просмотров: 83; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты