КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Выпуклость и вогнутость. ⇐ ПредыдущаяСтр 8 из 8 Опр. Ф-ция явл. выпуклой (вогнутой) на (a,b) если кассат. к граф-ку ф-ции в любой т-ке интервала, лежит ниже (выше) гр. ф-ции. y=y0+f‘(x0)(x-x0)=f(x0)+f‘(x0)(x-x0) – линейная ф-ция х, который не превосходит f(x) и не меньше f(x) в случае вогнутости неравенства хар-щие выпуклость (вогнутость) через диф. f(x)³f(x0)+ f‘(x0)(x-x0) " x,x0Î(a;b) f вогнута на (а,b). Хорда выше (ниже), чем график для вып. ф-ций (вогн.) линейная ф-ция kx+b, в частности постоянна, явл. вып. и вогнутой.
Б/б пол-ти Посл-ть {xn} наз-ся б/б, если для " пол-ного числа А $ номер N такой, что при n>N вып-ся нер-во ½xn½>A Возьмем любое число А>0. Из неравенства ½xn½=½n½>A получаем n>A. Если взять N³А, то " n>N вып-ся ½xn½>A, т.е. посл-ть {xn} б/б. Замечание. Любая б/б посл-ть явл. неограниченной. Однако неогранич. Посл-ть может и не быть б/б. Например 1,2,1,3,1,…,1,n… не явл. б/б поскольку при А>0 нер-во ½xn½>A не имеет места " xn с нечет. номерами.
Гладкая ф-ция Сл. ф-ция f(x) тоже явл. гладкой, т.е. f‘ $ и непрерывна причем имеет место сл. ф-ла F‘(x)=f‘(j(x))*j‘(x) (4). Используя ф-лу (4) получаем y‘=(lnf(a))‘=f‘(x)/f(x) (5) – логарифмической пр-ной. Правая часть это скорость изменения у (ф-ция f(x)) приходится на ед-цу абсол. значения этого пок-ля поэтому логарифм. Произв. наз-ют темпом прироста показателя y или f(x). Пусть известна динамика изменения цены на некотором интервале, причем P(t) гладкая ф-ция. Что можно назвать темпом роста этой ф-ции, при t=R. Темп роста¹приросту. Пр-р y=e^ax. Найдем темп прироста. f‘/f=темп прироста=ae^ax/e^ax=a. Экспонициальная ф-ция имеет постоянный темп прироста.
Эластичность ф-ций Опр. Пусть гладкая ф-ция y=f(x) описывает изменение экономической переменной у от эк. пер. х. Допустим f(x)>0 => имеет смысл лог. пр-ная. Эл-ностью ф-ции f(x) или у наз-ся сл-щая вел-на опред-мая с помощью лог. пр-ной. Ef(x)=x*f‘(x)/f(x)=x(lnf(x))‘ (6). Выясним эк. смысл этого показателя для этого заменим в (6) пр-ную ее разностным отношением Df(x0)/Dx и будем иметь Ef(x)»x(Df(x)/Dx)/f(x)=(Df(x)/f(x))/(Dx/x). В числителе стоит относит. Прирост ф-ции f в т-ке x, в знаменателе относ. прир. аргумента. => эл-ность ф-ции показывает на сколько % изменяется пок-ль y=f(x) при изменении перем. х на 1%. Эластичность – пок-ль реакции 1-й переменной на изменение другой. Пр-р. р-рим ф-цию спроса от цены, пусть D=f(p)=-aP+b – линейная ф-ция спроса, где а>0. Найдем эластичность спроса по цене. Ed(P)=P*D‘/D=P*(-a)/(-aP+b)=aP/(aP-b)=> эл-ность линейной ф-ции не постоянна
Применение 1й пр-ной в исслед. ф-ций Т-ма Ферма Т-ма Коши Интервалы монотонности ф-ции Т-ма Логранджа. Т-ма Ролля Т-ма Тейлора Т-ма Коши Правило Лопиталя. Производная обратной ф-ции Применение 1й пр-ной в исслед. ф-ций Все применения базируются на опред-нии пр-ной, как предела разностного отношения, а также на сл-щей т-ме. Т-ма Ферма. Если диф. на интервале (a,b) f(x) имеет в т-ке ч0 локальный экстремум, то пр-ная этой ф-ции обращается в 0, т.е. f‘(x0)=0 (8). Это необходимое усл. локал. экстр., но недостаточное. Опр. Все т-ки в которых пр-ная ф-ции f(x) обращается в 0 наз-ся крит. т-ми f(x). Из т-мы Ферма => экстремум надо искать только через крит. т-ки. Т-ма Коши. Пусть ф-ции f(x) и g(x) непрерывны на [a,b] и диф. на (a,b). Пусть кроме того, g‘(x)¹0, тогда $ т-ка cÎ(a,b) такая, что справедлива ф-ла (f(b)-f(a))/(g(b)-g(a))=f‘(c)/g‘(c)
Интервалы монотонности ф-ции Т-ма. Пусть f(x) диффер. На интервале (a,b), тогда справедливы сл. утверждения f(x) монотонно возр. (убывает) на интервале (a,b) тогда, когда f‘(x)³0 на интервале (a,b) и f‘(x)>0 (f‘(x)<0), то строго возр. (убыв) на (a,b). хÎ интерв. монотонно убывает, касательная имеет тупой угол наклона f‘(x1)<0 для x2 противоположная ситуация. Т-ма Логранджа. Пусть ф-ция f(x) непрер. на отрезке [a,b] и диф. на интервале (a,b), тогда " т. х и x+Dx Î [a,b] $ т-ка С лежащая между х и х+Dх такая что спаведлива ф-ла (f(x+Dx)-f(x))=f(c)*Dx (7) => при сравнении с ф-лой приращения ф-ций с диф. заметим, что (7) явл. точной ф-лой, однако теперь пр-ная фолжна считаться в некоторой средней т-ке С “алгоритм” выбора которой неизвестен. Крайнее значение (a,b) не запрещены. Придадим ф-ле (7) классический вид => x=a x+Dx=b+> тогда ф-ла (7)=(f(b)-f(a))/(b-a)=f‘(c) (7‘) – ф-ла конечных приращений Логранджа. (f(b)-f(a))/(b-a)=f‘(c) (1) Док-во сводится к сведению к т-ме Ролля. Р-рим вспом. ф-цию g(x)=f(x)-f(a)-(f(b)-f(a))/(b-a) * (x-a) Пусть ф-ция g(x) удовл. всем усл. т-мы Ролля на [a,b] А)Непрерывна на [a,b] Б) Дифференц. на (a,b) В) g(a)=g(b)=0 Все усл. Ролля соблюдены, поэтому $ т-ка С на (a,b) g‘(c)=0 g‘(c)=f‘(x)-(f(b)-f(a))/(b-a). Ф-ла (1) наз-ся ф-лой конечных приращений. Т-ма Ролля. Пусть ф-ция f(x) удовл. сл. усл. А)Непрерывна на [a,b] Б) Дифференц. на (a,b) В) принимает на коцах отрезков равные значения f(a)=f(b), тогда на (a,b) $ т-ка такая что f‘(c)=0, т.е. с-крит. т-ка. Док-во. Р-рим сначала, тривиальный случай, f(x) постоянная на [a,b] (f(a)=f(b)), тогда f‘(x)=0 $ x Î (a,b), любую т-ку можно взять в кач-ве с. Пусть f¹ const на [a,b], т.к. она непрер. на этом отрезке, то по т-ме Вейерштрасса она достигает своего экстрем. на этом отрезке и max и min. Поскольку f принимает равные знач. в гранич. т-ках, то хотя бы 1- экстр. – max или min обязательно достигается во внутр. т-ке. сÎ(a,b) (в противном случае f=const), то по т-ме Ферма, тогда f‘(c)=0, что и требовалось д-ть. Т-ма Тейлора. “О приближении гладкой ф-ци к полиномам” Опр. Пусть ф-ция f(x) имеет в т-ке а и некоторой ее окрестности пр-ные порядка n+1. Пусть х - любое значение аргумента из указанной окрестности, х¹а. Тогда между т-ми а и х надутся т-ка e такая, что справедлива ф-ла Тейлора. f(x)=f(a)+f‘(a)/1!(x+a)+ f‘‘(a)/2!(x+a)^2+f^(n)(а)/n!+f^(n+1)(e)/(n+1)!(x-a)^(n+1). Док-во. Сводится к Роллю путем введения вспом. переменной g(x). g(x)=f(x)-f(a)-f‘(x)(x-a)-…-1/n!*f^n(x)(x-a)^n-1/(n+1)!(x-a)^n+1*l. По т-ме Роляя $ т-ка с из (a,b), такая что g(c)=0 l=f^(n+1)(c)
Правило Лопиталя. Пусть ф-ция f(x) и g(x) имеет в окр. т-ки х0 пр-ные f‘ и g‘ исключая возможность саму эту т-ку х0. Пусть lim(х®Dх )=lim(x®Dx)g(x)=0 так что f(x)/g(x) при x®x0 дает 0/0. lim(x®x0)f‘(x)/g‘(x) $ (4), когда он совпадает с пределом отношения ф-ции lim(x®x0)f(x)/g(x)= lim(x®x0)f‘(x)/g‘(x) (5) Док-во. Возьмем " т-ку х>х0 и рассмотрим на [x0;x] вспом ф-цию арг. t h(t)=f(t)-Ag(t), если tÎ[x0;x], т.к. удовл. этому св-ву в окр-ти т-ки х0, а т-ку х мы считаем достаточно близкой к х0. Ф-ция h непрерывна на [x0;x], поскольку lim(t®x0)h(t)=lim(t®x0)[f(t)-Ag(t)]=lim(t®x0)-A lim(t®x0)g(t)=0=h(0)=> непр. t=x0 По т-ме Логранджа (x0,x)$ c:h‘‘(c)=0
Производная обратной ф-ции Т-ма. Для диф. ф-ции с пр-ной, не равной нулю, пр-ная обратной ф-ции равна обратной обратной величине пр-ной данной ф-ции. Док-во. Пусть ф-ция y=f(x) диф. и y‘x=f‘(x)¹0. Пусть Dу¹0 – приращение независимой переменной у и Dх – соответствующее приращение обратной ф-ции x=j(y). Напишем тождество: Dx/Dy=1:Dy/Dx (2) Переходя к пределу в рав-ве (2) при Dу®0 и учитывая, что при этом также Dх®0, получим: lim(Dy®0)Dx/Dy=1:lim(Dx®0)Dy/Dx => x‘y=1/y‘x. Где х‘у – пр-ная обратной ф-ции.
Производная обратной ф-ции Т-ма. Для диф. ф-ции с пр-ной, не равной нулю, пр-ная обратной ф-ции равна обратной обратной величине пр-ной данной ф-ции. Док-во. Пусть ф-ция y=f(x) диф. и y‘x=f‘(x)¹0. Пусть Dу¹0 – приращение независимой переменной у и Dх – соответствующее приращение обратной ф-ции x=j(y). Напишем тождество: Dx/Dy=1:Dy/Dx (2) Переходя к пределу в рав-ве (2) при Dу®0 и учитывая, что при этом также Dх®0, получим: lim(Dy®0)Dx/Dy=1:lim(Dx®0)Dy/Dx => x‘y=1/y‘x. Где х‘у – пр-ная обратной ф-ции.
|