Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Ряд распределения дискретной случайной величины




Читайте также:
  1. А) Ряд, многоугольник и функция распределения случайной дискретной величины
  2. А) Ряд, многоугольник и функция распределения случайной дискретной величины
  3. А) Ряд, многоугольник и функция распределения случайной дискретной величины
  4. Абсолютные величины
  5. Абсолютные величины, их виды и единицы измерения
  6. Абсолютные и относительные величины
  7. Абсолютные и относительные статистические величины
  8. Анализ распределения и использования прибыли предприятия
  9. Аудит распределения и использования прибыли
  10. Б) Функция распределения и плотность вероятности непрерывной случайной величины
…….
…….

Сумма вероятностей всегда равна 1.

 

Функция распределения (интегральная функция распределения)

Функция распределения случайной величины определяется по формуле . Это неубывающая функция, принимающая значения от 0 до 1. Если задана плотность распределения , то функция распределения выражается как .

Плотность распределения (дифференциальная функция распределения)

Плотность распределения случайной величины определяется по формуле . Существует только для непрерывной случайной величины. Для нее выполняется условие нормировки: (площадь под кривой равна 1).

 

Вероятность попадания случайной величины в заданный интервал

Может быть вычислена двумя способами:

1) через функцию распределения

2) через плотность распределения


Дата добавления: 2015-01-16; просмотров: 6; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2020 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты