КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Гипергеометрическое рапределениеИмеется N объектов. Из них n объектов обладают требуемым свойством. Из общего количества отбирается m объектов. Случайная величина X - число объектов из m отобранных, обладающих требуемым свойством. Для вычисления вероятностей используются биномиальные коэффициенты (см. число сочетаний). Закон распределения имеет вид:
Гипергеометрическое распределение — это дискретное вероятностное распределение, которое описывает количество успехов в выборке без возвращений длины над конечной совокупностью объектов.
Это выборка из объектов, из которых дефектных. Гипергеометрическое распределение описывает вероятность того, что именно дефектных в выборке из конкретных объектов, взятых из совокупности. Если случайная величина распределена гипергеометрически с параметрами , тогда вероятность получить ровно успехов (дефектных объектов в предыдущем примере) будет следующей: . Эта вероятность положительна, когда лежит в промежутке между и . Приведенная формула может трактоваться следующим образом: существует возможных выборок (без возвращения). Есть способов выбрать бракованных объектов и способов заполнить остаток выборки объектами без дефектов. В случае, когда размер популяции является большим по сравнению с размером выборки (т.е., намного больше, чем ), гипергеометрическое распределение хорошо аппроксимируется биномиальным распределением с параметрами (количество испытаний) и (вероятность успеха в одном испытании).
|