Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Барометрическая формула. Распределение Больцмана. Распределение Максвелла - Больцмана.

Читайте также:
  1. II. РАСПРЕДЕЛЕНИЕ ДОХОДА
  2. III. РАСПРЕДЕЛЕНИЕ ЧАСОВ КУРСА ПО ТЕМАМ И ВИДАМ РАБОТ
  3. Б. Распределение.
  4. Барометрическая формула. Распределение Больцмана
  5. Барометрическая формула: .
  6. Билет 25. Производство, передача и распределение электрической энергии.
  7. Биномиальное распределение.
  8. Биноминальное распределение
  9. В) системы с полным и с частичным распределением затрат.

Барометрическая формула — зависимость давления или плотности газа от высоты в поле тяжести. Для идеального газа, имеющего постоянную температуру T и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения g одинаково), барометрическая формула имеет следующий вид:

где p — давление газа в слое, расположенном на высоте h, p0 — давление на нулевом уровне (h = h0), M — молярная масса газа, R — газовая постоянная, T — абсолютная температура. Из барометрической формулы следует, что концентрация молекул n (или плотность газа) убывает с высотой по тому же закону:

где M — молярная масса газа, k — постоянная Больцмана.

Барометрическая формула лежит в основе барометрического нивелирования — метода определения разности высот Δh между двумя точками по измеряемому в этих точках давлению (p1 и p2). Поскольку атмосферное давление зависит от погоды, интервал времени между измерениями должен быть возможно меньшим, а пункты измерения располагаться не слишком далеко друг от друга


Дата добавления: 2015-01-19; просмотров: 22; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Распределение молекул по абсолютным значениям скоростей. Характерные скорости (наиболее вероятная, средняя, среднеквадратичная) в распределении Максвелла. | Распределение Максвелла - Больцмана
lektsii.com - Лекции.Ком - 2014-2019 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты