Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Виды эталонов




· Первичный эталон — это эталон, воспроизводящий единицу физической величины с наивысшей точностью, возможной в данной области измерений на современном уровне научно-технических достижений. Первичный эталон может быть национальным (государственным) и международным.

· Вторичный эталон — эталон, получающий размер единицы непосредственно от первичного эталона данной единицы.

· Эталон сравнения — эталон, применяемый для сличений эталонов, которые по тем или иным причинам не могут быть непосредственно сличены друг с другом.

· Исходный эталон — эталон, обладающий наивысшими метрологическими свойствами (в данной лаборатории, организации, на предприятии), от которого передают размер единицы подчинённым эталонам и имеющимся средствам измерений.

· Рабочий эталон — эталон, предназначенный для передачи размера единицы рабочим средствам измерений.

· Государственный первичный эталон — первичный эталон, признанный решением уполномоченного на то государственного органа в качестве исходного на территории государства.

· Международный эталон — эталон, принятый по международному соглашению в качестве международной основы для согласования с ним размеров единиц, воспроизводимых и хранимых национальными эталонами.

 

По мере развития науки и техники появилась нужда в большом количестве других эталонов. Например, эталон частоты, времени, температуры, напряжения и т. д. Прогресс не только вводил новые эталоны, но и повышал точность старых. Метр в настоящее время определён как длина пути, проходимого светом в вакууме за (1 / 299 792 458) секунды

7. Классификация измерений. Прямое измерение. Косвенное измерение. Совокупные измерения. Совместные измерения.

Измерения как экспериментальные процессы весьма разнообразны. Это объясняется множеством экспериментальных величин, различным характером измерения величин, различными требованиями точности измерения и другие.

Наиболее распространена классификация видов измерений в зависимости от способа обработки экспериментальных данных. В соответствии с этой классификацией измерения делятся на прямые, косвенные, совместные и совокупные.

Прямые измерения - измерения, снятые непосредственно со шкалы измерительного прибора.

Косвенное измерение — измерение, при котором искомое значение величины находится на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. Мерное параллельно или вблизи мерного.

· сопротивление резистора находим на основании закона Ома подстановкой значений силы тока и напряжения, получаемых в результате прямых измерений. (Проводим прямое измерение напряжения, проводим прямое измерение тока, потом на основании полученных ДВУХ чисел получаем косвенное «измерение» сопротивления)

Совместное измерение — одновременное измерение нескольких неодноименных величин для нахождения зависимости между ними. При этом решается система уравнений.

· определение зависимости сопротивления от температуры. При этом измеряются неодноименные величины, по результатам измерений определяется зависимость.

· определение зависимости тока от напряжения: меняем напряжение, и смотрим, как при этом меняется ток, проводим соответствующие измерения меняющихся напряжения и тока, получаем зависимость тока от напряжения, а потом определяем, что это за зависимость, и все её параметры.

Совокупное измерение — это проведение ряда измерений (чаще всего прямых, но, вообще-то, измерения из ряда могут быть любыми — вспомните, как получаются сложные функции в математике) нескольких величин одинаковой размерности в различных сочетаниях, после чего искомые значения величин находятся решением системы уравнений. Число уравнений при этом должно быть равно числу измерений.

· измерение сопротивления резисторов, соединённых треугольником. При этом измеряется значение сопротивления между вершинами. По результатам определяются сопротивления резисторов.

· определение масс гирь набора гирь (1, 2, 2, 5) кг с использованием одной эталонной гири 1 кг и компаратора масс («весов», предназначенных для определения разности масс двух грузов). Компарируют, например:

— эталон с гирей 1 кг из набора; — эталон + гирю 1 кг из набора с гирей 2 кг из набора; — эталон + гирю 1 кг из набора с другой гирей 2 кг из набора; — гири 1 + 2 + 2 кг из набора с оставшейся гирей 5 кг из набора.

 

8. Методы электрических измерений.

лектрические измерения выполняются по одному из следующих видов: прямой, косвенный, совокупный и совместный. Название прямого вида говорит само за себя, значение нужной величины определяется непосредственно прибором. Примером таких измерений может служить определение мощности ваттметром, силы тока амперметром и т. д.

Косвенный вид заключается в нахождении величины на основании известной зависимости этой величины и величины, найденной прямым методом. Примером может служить определение мощности без ваттметра. Прямым методом находят I, U, фазу и по формуле вычисляют мощность.

Совокупный и совместный виды измерений заключаются в одновременном измерении нескольких одноименных (совокупный) или не одноимённых (совместный) величин. Нахождение искомых величин осуществляется решением систем уравнений с коэффициентами, полученными в результате прямых измерений. Число уравнений в такой системе должно равняться числу искомых величин.

Прямые измерения как самый распространенный вид измерений могут производиться двумя основными методами:метод непосредственной оценки и метод сравнения с мерой. Первый метод является самым простым, так как значение нужной величины определяют по шкале прибора.

Таким методом определяется сила тока амперметром, напряжение вольтметров и т. д. Достоинством данного способа можно назвать простоту, а недостатком невысокую точность.

Измерения сравнением с мерой выполняется по одной из следующих методик: замещения, противопоставления, совпадения, дифференциальной и нулевой. Мера является своего рода эталонным значением некоторой величины.

 

Дифференциальный и нулевой методы – заложены в основе работы измерительных мостов. При дифференциальном методе делают неуравновешенно-показывающие мосты, а при нулевом – уравновешенные или нулевые.

В уравновешенных мостах сравнение происходит при помощи двух или более вспомогательных сопротивлений, подбираемых таким образом, чтобы со сравниваемыми сопротивлениями они составляли замкнутый контур (четырехполюсник), питаемый от одного источника и имеющий равнопотенциальные точки, обнаруживаемые индикатором равновесия.

Отношение между вспомогательными сопротивлениями является мерой отношения между сравниваемыми величинами. Индикатором равновесия в цепях постоянного тока выступает гальванометр, а в цепях переменного тока милливольтметр.

Дифференциальный метод иначе называют разностным, так как на средство измерения воздействует именно разность известной и искомой величины тока. Нулевой метод является предельным случаем дифференциального метода. Так например, в указанной мостовой схеме гальванометр показывает ноль, если соблюдается равенство:

R1*R3 = R2*R4;

Из этого выражения следует:

Rx=R1=R2*R4/R3.

Таким образом, можно вычислить сопротивление любого неизвестного элемента, при условии, что остальные 3 являются образцовыми. Образцовым также должен быть и источник постоянного тока.

 

Метод противопоставления – иначе этот метод называют компенсационным и используют для непосредственного сравнения напряжения или ЭДС, тока и косвенно для измерений других величин, преобразуемых в электрические.

Две встречно направленные ЭДС, не связанные между собой включаются на прибор, по которому уравновешивают ветви схемы. На рисунке: требуется найти Ux. С помощью образцового регулируемого сопротивления Rk добиваются такого падения напряжения Uk, чтобы численно оно было равно Ux.

Судить об их равенстве можно по показаниям гальванометра. При равенстве и ток в цепи гальванометра протекать не будет, так как они противоположно направлены. Зная сопротивление и величину тока по формуле определяем .

 

Метод замещения – метод, при котором искомую величину замещают или совмещают с известной образцовой величиной, по значению равной замещенной. Такой способ применяется для определения индуктивности или емкости неизвестной величины. Выражение, определяющее зависимость частоты от параметров цепи:

fо=1/(√LC).

Слева, частота f0 задаваемая генератором ВЧ, в правой части значения индуктивности и емкости измеряемой цепи. Подбирая резонанс частоты можно определить неизвестные значения в правой части выражения.

Индикатором резонанса является электронный вольтметр с большим входным сопротивлением, показания которого в момент резонанса будут наибольшими. Если измеряемую катушку индуктивности включить параллельно образцовому конденсатору и измерять резонансную частоту, то значение Lx можно найти по вышеуказанному выражению. Аналогично находится неизвестная емкость.

Вначале резонансный контур, состоящий из индуктивности Lи образцового конденсатора емкости Co, настраивают в резонанс на частоту fo; при этом фиксируют значения fo и емкости конденсатора Co1.

Затем, параллельно образцовому конденсатору Co подключают конденсатор и изменением емкости образцового конденсатора добиваются резонанса при той же частоте fo; соответственно искомая величина равна Co2.

 

Метод совпадений – метод, при котором разность между искомой и известной величиной определяется по совпадению отметок шкал или периодических сигналов. Ярким примером применения этого способа в жизни является измерение угловой скорости вращения различных деталей.

Для этого на измеряемом объекте наносят метку, например мелком. При вращении детали с меткой, на нее направляют стробоскоп, частота мигания которого известна изначально. Регулированием частоты стробоскопа добиваются, чтобы метка стояла на месте. При этом частоту вращения детали принимают равной частоте мигания стробоскопа.

 

9. Погрешности измерений( относительная, абсолютная, приведенная).

Погрешность измерения — оценка отклонения измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения.

Абсолютной погрешностью приближения называется модуль разности между истинным значением величины и её приближённым значением. , где — истинное значение, — приближённое.

Относительной погрешностью приближения называется отношение абсолютной погрешности к модулю приближённого значения величины.

, где — истинное значение, — приближённое.

Относительную погрешность обычно вызывают в процентах.

Пример. При округлении числа до единиц получается число .

Относительная погрешность равна . Говорят, что относительная погрешность в этом случае равна .

Приведённая погрешность — погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле , где — нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

· если шкала прибора односторонняя, то есть нижний предел измерений равен нулю, то определяется равным верхнему пределу измерений;

· если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.

Приведённая погрешность является безразмерной величиной, либо измеряется в процентах.

 


Поделиться:

Дата добавления: 2015-01-19; просмотров: 708; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты