Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Глобальная формула Тейлора с остаточным членом различного вида.




Читайте также:
  1. IV. ГЛОБАЛЬНАЯ КОНКУРЕНЦИЯ
  2. IV.1.3. Формула Клина
  3. Барометрическая формула. Распределение Больцмана
  4. Барометрическая формула. Распределение Больцмана. Распределение Максвелла - Больцмана.
  5. Барометрическая формула: .
  6. В центре экологической ниши обычно существуют оптимальные для вида условия существования, ухудшающиеся к периферии области обитания вида.
  7. Гіпотеза й формула де Брoйля. Дослідне обґрунтування корпускулярно-хвильового дуалізму речовини
  8. Глобальная комп.сеть корпорации. Технология работы сети корпораций.
  9. Глобальная сеть Internet
  10. Глобальная сеть Интернет. История появления сети Интернет.

Ответ:

Формула Тейлора.

Тейлор (1685-1731) – английский математик

 

Теорема Тейлора. 1) Пусть функция f(x) имеет в точке х = а и некоторой ее окрестности производные порядка до (n+1) включительно.{ Т.е. и все предыдущие до порядка n функции и их производные непрерывны и дифференцируемы в этой окрестности}.

2) Пусть х- любое значение из этой окрестности, но х ¹ а.

Тогда между точками х и а найдется такая точка e, что справедлива формула:

 

- это выражение называется формулой Тейлора, а выражение:

 

называется остаточным членом в форме Лагранжа.

 

Доказательство. Представим функцию f(x) в виде некоторого многочлена Pn(x), значение которого в точке х = а равно значению функции f(x), а значения его производных равно значениям соответствующих производных функции в точке х = а.

 

(1)

 

Многочлен Pn(x) будет близок к функции f(x). Чем больше значение n, тем ближе значения многочлена к значениям функции, тем точнее он повторяет функцию.

Представим этот многочлен с неопределенными пока коэффициентами:

 

(2)

Для нахождения неопределенных коэффициентов вычисляем производные многочлена в точке х = а и составляем систему уравнений:

 

(3)

 

Решение этой системы при х = а не вызывает затруднений, получаем:

…………………….

Подставляя полученные значения Ci в формулу (2), получаем:

 

 

Как было замечено выше, многочлен не точно совпадает с функцией f(x), т.е. отличается от нее на некоторую величину. Обозначим эту величину Rn+1(x). Тогда:

 

f(x) = Pn(x) + Rn+1(x)

 

Теорема доказана.


Дата добавления: 2015-01-19; просмотров: 16; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты