КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Выпуклость графика функций и точки перегиба.Ответ: Определение. Кривая обращена выпуклостью вверх на интервале (а, b), если все ее точки лежат ниже любой ее касательной на этом интервале. Кривая, обращенная выпуклостью вверх, называется выпуклой, а кривая, обращенная выпуклостью вниз – называется вогнутой.
у
x
На рисунке показана иллюстрация приведенного выше определения.
Теорема 1. Если во всех точках интервала (a, b) вторая производная функции f(x) отрицательна, то кривая y = f(x) обращена выпуклостью вверх (выпукла).
Доказательство. Пусть х0 Î (a, b). Проведем касательную к кривой в этой точке. Уравнение кривой: y = f(x); Уравнение касательной: Следует доказать, что .
По теореме Лагранжа для f(x) – f(x0): , x0 < c < x.
По теореме Лагранжа для
Пусть х > x0 тогда x0 < c1 < c < x. Т.к. x – x0 > 0 и c – x0 > 0, и кроме того по условию , следовательно, .
Пусть x < x0 тогда x < c < c1 < x0 и x – x0 < 0, c – x0 < 0, т.к. по условию то .
Аналогично доказывается, что если f¢¢(x) > 0 на интервале (a, b), то кривая y=f(x) вогнута на интервале (a, b).
Теорема доказана.
Определение. Точка, отделяющая выпуклую часть кривой от вогнутой, называется точкой перегиба.
Очевидно, что в точке перегиба касательная пересекает кривую.
Теорема 2. Пусть кривая определяется уравнением y = f(x). Если вторая производная f¢¢(a) = 0 или f¢¢(a) не существует и при переходе через точку х = а f¢¢(x) меняет знак, то точка кривой с абсциссой х = а является точкой перегиба.
Доказательство. 1) Пусть f¢¢(x) < 0 при х < a и f¢¢(x) > 0 при x > a. Тогда при x < a кривая выпукла, а при x > a кривая вогнута, т.е. точка х = а – точка перегиба.
2) Пусть f¢¢(x) > 0 при x < b и f¢¢(x) < 0 при x < b. Тогда при x < b кривая обращена выпуклостью вниз, а при x > b – выпуклостью вверх. Тогда x = b – точка перегиба.
Теорема доказана.
29. Достаточное условие выпуклости графика функции и точки её перегиба. Ответ: Теорема. Для того, чтобы дважды дифференцируемая в точке x0 функция была выпукла вверх (вниз) в этой точке, необходимо и достаточно, чтобы вторая производная этой функции в x0 была неположительной (неотрицательной). . Следует отметить, что первые два слагаемых ряда Тейлора совпадают с правой частью уравнения касательной, проведённой в графику функции y = f (x) в точке х0: Y = f ( x0 ) + f '( x0 )·( x − x0 ). Учитывая, что слагаемое o(x - x0)2 в достаточно малой окрестности точки х0 мало, и на знак выражения влияния не оказывает, получим зависимость знака второй производной на направление выпуклости sign ( f ( x ) − Y) = sign ( f ''( x0 ) ). Теорема. Для того чтобы дважды дифференцируемая на интервале (а, b) функция, была выпукла вверх (вниз) в нем, необходимо, чтобы во всех точках этого интервала вторая производная функции была ≤ 0 ( ≥ 0). f ( x ) − f ( x0 ) − f ' ( x0 )·( x − x0 ) ≥ 0. Применяя формулу Лагранжа к первому и второму слагаемому, получим [ f ' ( c1 ) − f ' ( x0 ) ]·( x − x0 ) ≥ 0. Применяя ещё раз формулу Лагранжа в квадратной скобке, получим f '' ( c2 )·( c1 − x0 )·( x − x0 ) ≥ 0, откуда непосредственно следует f '' ( c2 ) ≥ 0 так как x0 < с2 < c1 < x. Поскольку аргумент х выбран произвольно в достаточно малой окрестности точки х0, то и аргумент для второй производной в этом случае тоже произволен в достаточно малой окрестности точки х0.
|