Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Соленость




Водный обмен теснейшим образом связан с солевым. Он приобретает особое значение для водных организмов (гидробионтов). Для всех водных организмов характерно наличие проницаемых для воды покровов тела, поэтому различие в концентрации растворенных в воде солей и солей, определяющих осмотическое давление в клетках организма, создает осмотический ток. Он направлен в сторону большего давления.

У гидробионтов, обитающих в морских и пресноводных экосистемах наблюдаются существенные отличия в адаптациях к концентрации растворенных в водной среде солей.

У большинства морских организмов внутриклеточная концентрация солей близка к таковой в морской воде. Любые изменения внешней концентрации приводят к пассивному изменению осмотического тока. Внутриклеточное осмотическое давление меняется соответственно изменению концентрации солей в водной среде. Такие организмы называют пойкилоосмотическими. К ним относятся все низшие растения (в том числе сине-зеленые водоросли - цианобактерии), большинство морских беспозвоночных животных. Диапазон толерантности к изменениям концентрации солей у этих организмов невелик; они распространены, как правило, в морских экосистемах с относительно постоянной соленостью.

К другой группе водных организмов относятся так называемые гомойоосмотические. Они способны активно регулировать осмотическое давление и поддерживать его на определенном уровне независимо от изменений концентрации солей в воде, поэтому их называют также осморегуляторами. К ним относятся высшие раки, моллюски, водные насекомые.

Осмотическое давление внутри клеток не зависит от химической природы растворенных в цитоплазме солей. Оно обусловлено общим количеством растворенных частиц (ионов). У осморегуляторов активная ионная регуляция обеспечивает относительное постоянство внутренней среды, а также способность избирательно извлекать из воды отдельные ионы и накапливать их в клетках своего организма.

Задачи осморегуляции в пресной воде противоположны таковым в морской. У пресноводных организмов внутриклеточная концентрация солей всегда выше, чем в окружающей среде. Осмотический ток всегда направлен внутрь клеток, и эти виды являются гомойоосмотическими.

Важным механизмом поддержания водно-солевого гомеостаза является активный перенос ионов против градиента концентрации. У некоторых водных животных этот процесс осуществляется поверхностью тела, но главным местом такого активного транспорта служат специальные образования - жабры. В ряде случаев покровные образования затрудняют проникновение воды через кожу, например, чешуя, панцири, слизь; тогда активное выведение воды из организма происходит с помощью специализированных органов выделения.

Водно-солевой обмен у рыб представляет собой более сложный процесс, который требует отдельного рассмотрения. Здесь отметим лишь, что он происходит по следующей схеме: вода поступает в организм осмотическим путем через жабры и слизистую оболочку желудочно-кишечного тракта, избыток ее выводится через почки. Фильтрационно-реабсорбционная функция почек может меняться в зависимости от соотношения осмотических давлений водной среды и жидкостей организма.

Благодаря активному переносу ионов и способности к осморегуляции многие пресноводные организмы, в том числе рыбы, приспособились к жизни в солоноватой и даже в морской воде. Они могут занимать различные экологические ниши.

Наземные организмы имеют в той или иной мере специализированные структурно-функциональные образования, обеспечивающие водной-солевой обмен. Известны многочисленные варианты приспособлений к. солевому составу среды и его изменениям у обитателей суши.

Эти приспособления становятся решающими в тех случаях, когда вода является лимитирующим фактором жизни. Многие беспозвоночные животные, например амфибии, обитают во влажных наземных биотопах благодаря особенностям водно-солевого обмена, которые сходны с обменом у пресноводных животных. По-видимому, такой тип приспособления сохранился в ходе эволюции при переходе из водной среды обитания в наземную.

Для растений аридных (засушливых) зон большое значение в ксерофитных условиях имеет повышенное содержание солей в почве.

Солеустойчивость различных видов растений существенно отличается. На засоленных почвах обитают галофиты - растения, которые переносят большие концентрации солей.

Они накапливают в тканях до 10 % солей, что ведет к повышению осмотического давления и способствует более эффективному насасыванию влаги из засоленных почв. Некоторые растения выводят избыток солей через специальные образования на поверхности листа, другие обладают способностью связывать соли с органическими веществами в протопластах.

Реакция среды (рН)

Распространение и численность популяций существенно зависит от реакции почвы или водной среды.

Загрязнение атмосферного воздуха вследствие сжигания ископаемого топлива (чаще всего диоксидом серы) приводит к отложению сухих ацидогенных частиц и выпадению дождя, состоящего, по сути, из слабой сернистой кислоты. Выпадение таких "кислых дождей" вызывает закисле-ние различных объектов окружающей среды. Сейчас проблема "кислых дождей" стала приобретать глобальный характер. Влияние закисления сводится к следующему.

Снижение рН ниже 3, также как повышение выше 9, приводит к повреждению протоплазмы корней большинства сосудистых растений. Изменение рН в почве вызывает ухудшение условий питания: снижается доступность биогенных элементов для растений.

Снижение рН до 4,0 - 4,5 в почве или донных осадках в водных экосистемах вызывает разложение глинистых пород (алюмосиликатов), вследствие чего среда становится токсичной из-за поступления в воду ионов алюминия (Al ). Даже железо и марганец, необходимые для нормального роста и развития растений, при низких рН становятся токсичными вследствие перехода в ионную форму. Пределы устойчивости к закислению почвы у разных растений различны, но только немногие растения могут расти и размножаться при рН ниже 4,5.

При высоких значениях рН, т. е. при подщелачивании, также создаются неблагоприятные условия для жизнедеятельности растений. В щелочных почвах железо, марганец, фосфаты присутствуют в виде малорастворимых соединений и плохо доступны для растений.

Резко отрицательное воздействие оказывает на биоту закисление водных экосистем. Повышенная кислотность действует негативно в трех направлениях:

· нарушения осморегуляции, активности ферментов (они имеют оптимумы рН), газообмена;

· токсического воздействия ионов металлов;

· нарушений в пищевых цепях, изменения пищевого рациона и доступности пищи.

В пресноводных экосистемах определяющую роль в реакции среды играет кальций, который наряду с диоксидом углерода определяет состояние карбонатной системы водных объектов. Присутствие ионов кальция имеет значение и для поведения остальных компонентов, например железа. Поступление кальция в воду связано с неорганическим углеродом карбонатных пород, из которых происходит его выщелачивание.


Поделиться:

Дата добавления: 2015-01-29; просмотров: 135; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты