КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Определение жидкости и газаСтр 1 из 7Следующая ⇒ Введение
Гидравлика представляет собой теоретическую дисциплину, изучающую вопросы, связанные с механическим движением жидкости в различных природных и техногенных условиях. Поскольку жидкость (и газ) рассматриваются как непрерывные и неделимые физические тела, то гидравлику часто рассматривают как один из разделов механики так называемых сплошных сред, к каковым принято относить и особое физическое тело -жидкость. По этой причине гидравлику часто называют механикой жидкости или гидромеханикой; предметом её исследований являются основные законы равновесия и движения жидкостей и газов. Как в классической механике в гидравлике можно выделить общепринятые составные части: гидростатику, изучающую законы равновесия жидкости; кинематику, описывающую основные элементы движущейся жидкости и гидродинамику, изучающую основные законы движения жидкости и раскрывающую причины её движения. Гидравлику можно назвать базовой теоретической дисциплиной для обширного круга прикладных наук, с помощью которых исследуются процессы, сопровождающие работу гидравлических машин, гидроприводов. С помощью основных уравнений гидравлики и разработанных ею методов исследования, решаются важные практические задачи, связанные с транспортом жидкостей и газов по трубопроводам, а также с транспортом твёрдых тел по трубам и другим руслам. Гидравлика также решает важнейшие практические задачи, связанные с равновесием твёрдых тел в жидкостях и газах, т.е. изучает вопросы плавания тел. Широкое использование в практической деятельности человека различных гидравлических машин и механизмов ставят гидравлику в число важнейших дисциплин, обеспечивающих научно-технический прогресс.
Определение жидкости и газа Жидкость – это физическое тело, способное легко изменять свою форму под действием внешних сил. Жидкость в гидравлике рассматривают как непрерывную (сплошную) среду, заполняющую пространство без пустот и промежутков, при этом не рассматривают молекулярного строения жидкости и её частиц. В отличие от твердых тел, жидкости характеризуются весьма большой подвижностью своих частиц и поэтому обладают свойством текучести и способностью принимать форму сосуда, в которой они помещены. Жидкости условно подразделяют на капельные и газообразные. Капельные жидкости отличаются от газообразных малой сжимаемостью и значительно большими плотностями. Так, например, воздух, который представляет собой смесь различных газов при 00С и 760 мм.рт.столба имеет плотность 1,29 кг/м3, в то время как плотность воды при 40С – 1000 кг/м3 . Принято считать капельные жидкости несжимаемыми, а газообразные – сжимаемыми. Газообразные жидкости. Газообразные жидкости (газы) изменяют свой объем под влиянием термодинамических параметров (давления, температуры, объема) в значительной степени. В гидравлике обычно изучают капельные жидкости (или просто жидкости). Газообразные жидкости не имеют определенной формы и объема. Их форму и объем определяют форма и объем сосудов, которые они заполняют. Молекулы газов отстоят друг от друга весьма далеко в сравнении с расстояниями между молекулами капельных жидкостей и в процессе теплового движения разлетаются друг от друга. Поэтому газы легко расширяются, а под действием внешних сил также легко сжимаются. Имея это в виду, газ и пары называют также упругими жидкостями. Газы не оказывают сопротивления растягивающим усилиям и обладают весьма малой вязкостью. Газ занимает весь объем закрытого сосуда, в который он помещен. Капельные жидкости встречаются в природе и применяются в технике: вода, нефть, бензин и т. д. При изменении давления и температуры их объем изменяется весьма незначительно. Капельные жидкости практически не оказывают заметного сопротивления растягивающим усилиям. Силы сцепления, существующие между молекулами этих жидкостей, проявляются только на их поверхности в виде так называемых сил поверхностного натяжения, где и обнаруживается известная сопротивляемость жидкости разрыву. Наличием сил поверхностного натяжения объясняется, например, существование тонкой пленки мыльного пузыря, образование капли, удерживаемой от падения и т.д. Силы сопротивления разрыву у жидкости ничтожно малы.
|