КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Пример №6.Дано: Е =32 В, RВН=1 Ом, R1=10 Ом, R2=15 Ом, R3=25 Ом, R4=25 Ом, Определить: Эквивалентное сопротивление всей цепи RЭКВ и токи в ветвях.
Рис. 6а. Рис. 6б.
Рис. 6в. Рис. 6г. Рис. 6д. Решение. Выберем направление неизвестных токов I, I1, I2, I3, I4, I5произвольным образом (как показано на рис. 6а). Обозначим места соединения элементов электрической цепи точками A, B, C, D. Как видно из рис. 6а. в электрической схеме нет ни последовательного, ни параллельного, ни смешанного соединения резисторов. Следовательно, эту задачу решим преобразовав резисторы с сопротивлениями R1, R2, R3, соединенные треугольником АВС в эквивалентную звезду с сопротивлениями RА, RВ, RС. Для этого мысленно опускаем лучи из узлов А, В, С в одну общую точку О (узел 0). Можно доказать, что сопротивления резисторов, находящихся на этих лучах, вычисляются по формулам: После проведенных преобразований резисторы R1, R2, R3 из исходной схемы исключаются, в результате получаем следующую эквивалентную схему. (Рис. 6б.) В этой схеме токи I4, I5, I остаются теми же самыми (по величине и по направлению), что и на рис. 6а, поскольку данная часть схемы не была затронута выполненным преобразованием. Анализ электрической схемы рис. 6б показывает, что резисторы с сопротивлениями RА и R4, а также резисторы с сопротивлениями RС и R5 включены последовательно. Заменим их на эквивалентные им резисторы с сопротивлениями RА4 и соответственно RС5 : Получаем следующую эквивалентную схему 6в. В данной схеме сопротивления RА4 и RС5 включены параллельно. Заменим их на эквивалентный им резистор с сопротивлением ROD, рассчитанным по формуле: После проведенного преобразования схема 6в трансформируется в схему 6г, в которой резисторы с сопротивлениями RВ, ROD, RВН включены между собой последовательно. Заменим их на общий эквивалентный им резистор с сопротивлением RЭКВ, найденным по формуле: Получаем окончательную эквивалентную схему замещения (рис. 6д) исходной расчетной схемы (рис. 6а). Зная общее эквивалентное сопротивление цепи можно найти ток I, протекающий через источник ЭДС Е: Чтобы найти токи I4 и I5, протекающие через соответствующие резисторы с сопротивлениями RА4 и RС5 необходимо определить падение напряжения UOD (рис 6г): Следовательно, (См. рис. 6в) Чтобы вычислить ток I3 необходимо знать падение напряжения UAC, которое определим по второму закону Кирхгофа, выбрав положительный обход контура ADCА по часовой стрелке, как показано на рис. 6а: Следовательно, Токи I1 и I2 определим по первому закону Кирхгофа соответственно для узлов А и С: узел А: узел С: Правильность расчетов любой электрической цепи проверяется по законам Кирхгофа, но наиболее достоверная проверка получается лишь по балансу электрических мощностей: Где - алгебраическая сумма мощностей, выделяемых источниками ЭДС Е, слагаемое этой суммы берется со знаком «+», если направления ЭДС источника и тока, протекающего через него совпадают между собой, в противном случае берется знак «-». Где - арифметическая сумма мощностей, потребляемых приемниками (в нашем случае резисторами). ПРИМЕЧАНИЕ. Баланс мощностей составляется для исходной схемы с учетом истинных направлений токов. Проверим правильность проведенных расчетов по балансу мощностей:
64 Вт=64 Вт. Согласно балансу электрических мощностей, расчеты проведены корректно. Ту же самую задачу можно решить, воспользовавшись эквивалентным преобразованием резисторов с сопротивлениями R1, R3, R4, соединенных звездой в треугольник с эквивалентными резисторами с сопротивлениями После такого преобразования резисторы с сопротивлениями R1, R3, R4 исключаются из исходной схемы. В результате получаем преобразованную схему (рис. 7б).
Рис. 7в. Рис. 7г. Рис. 7д.
Как видно из рис. 7б резисторы с сопротивлениями R2 и R13, а также R5 и R34 включены между собой параллельно. Следовательно, Преобразуем электрическую схему 7б в электрическую схему 7в. Поскольку резисторы с сопротивлениями RВС и RCD включены последовательно, то (Рис. 7г) Общее эквивалентное сопротивление всей цепи с учетом внутреннего сопротивления источника ЭДС определяется: Зная общее эквивалентное сопротивление всей цепи, вычислим ток, протекающий через источник ЭДС: Используя второй закон Кирхгофа для замкнутого контура BDB определим падение напряжения между точками В и D (см. рис 7г): Рассчитаем промежуточный ток IBCD (см. рис. 7г): Найдем падения напряжений UBC и UCD из рис. 7в: Теперь определим неизвестные токи I2 и I5 из рис. 7б:
Вычислим неизвестные токи I1 и I4 по первому закону Кирхгофа, составленных для соответственно узлов В и D (см. рис. 7а): узел В: узел D: Для определения оставшегося неизвестного тока I3 воспользуемся вторым законом Кирхгофа для замкнутого контура ВАСВ: Как следует из проведенных вычислений любой способ эквивалентного преобразования треугольника в звезду или наоборот дает один и тот же искомый результат, естественно, при четком соблюдении правил и порядка расчетов.
|