Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Фракционный состав, способы определения. Зависимость выхода фракции от температуры кипения нефтепродукта




Читайте также:
  1. E) понижение температуры
  2. I блок 9. Профессиональное становление личности. Условия эффективного профессионального самоопределения.
  3. II. Состав, порядок определения баллов оценки качественных критериев и оценки эффективности на основе качественных критериев
  4. III. Состав, порядок определения баллов оценки и весовых коэффициентов количественных критериев и оценки эффективности на основе количественных критериев
  5. Агентские сети и способы стимулирования их активности
  6. АГЗУ Спутник. Состав, работа.
  7. Адсорбция зависит от концентрации компонентов и температуры.
  8. Активные способы проверки домашнего задания
  9. Альтернативные способы получения и преобразования энергии.
  10. Альтернативные способы получения электрической энергии.

Компоненты нефти и нефтепродуктов

Нефть и нефтепродукты представляют собой сложную жидкую смесь близкокипящих углеводородов и высокомолекулярных углеводородных соединений с гетероатомами кислорода, серы, азота, некоторых металлов и органических кислот.

Основными структурными элементами нефти являются углерод и водород, а элементарный состав колеблется в небольших пределах: углерод 83÷87%, водород 11÷14%.

На долю других элементов, объединяемых группой, смолисто-асфальтеновые вещества представляют собой высокомолекулярные органические соединения, содержащие углерод, водород, серу, азот и металлы. К ним относятся: нейтральные смолы, растворимые в бензинах; асфальтены, не растворимые в петролейном эфире, но растворимые в горячем бензоле; карбены, растворимые в сероуглероде; карбониты, ни в чем не растворимые. При сгорании нефти получается зола (сотые доли процента), состоящая из окислов кальция, магния, железа, алюминия, кремния, натрия и ванадия. Кстати, соединения последнего являются переносчиками кислорода и способствуют активной коррозии.

Углеводороды, различающиеся содержанием углерода и водорода в молекуле, а также строением, являются основным компонентом нефти. Углеводороды принято разделять на парафиновые(насыщенные алканы),нафтеновые и ароматические.

Преобладание той или иной группы углеводородов придает этим продуктам специфические свойства. В зависимости от преобладания в нефти одного из трех представителей углеводородов (более 50%) нефти именуются метановые, нафтеновые или ароматические. В случае, когда к доминирующему присоединяется другой углеводород в количестве не менее 25%, то им дают комбинированное название, например, метанонафтеновые.

 

Фракционный состав, способы определения. Зависимость выхода фракции от температуры кипения нефтепродукта

 

Разделение таких сложных смесей, как нефть и конденсат, на более простые называют фракционированием.

Нефтепродукты и конденсаты, получаемые из нефти, являются фракциями, вскипающими в достаточно узких температурных пределах (см. рис. 1.1), определяемых техническими условиями. При перегонке нефти, имеющей типичный состав, можно получить: 31% бензиновых фракций, 10% керосиновых, 51% дизельных, 20% базового масла и около 15% составит мазут.



Условно товарные нефтепродукты делятся на светлые, темные, пластичные смазки и нефтехимические продукты. К светлымнефтепродуктам относят и бензины, керосины, топлива для реактивных двигателей, дизельные топлива. Темные нефтепродукты – это различные масла и мазуты.

В процессе перегонки составляющие его компоненты отгоняются в порядке возрастания их температур кипения. При определении фракционного состава по ГОСТ 2177-82 перегонку ведут до 300°С. При этом отмечают температуру начала перегонки (н. к.) и объемы дистиллятов при 100, 120, 150, 160°С, а далее через каждые 20°С до 300°С. Обычно бензиновые фракции выкипают в пределах 35¸205°С, керосиновые – 150¸315°С, дизельные – 180¸420°С, тяжелые масляные дистилляты – 420¸490°С, остаточные масла – выше 490°С.

Перегонку нефтепродуктов с температурами кипения до 370°С ведут при атмосферном давлении, а с более высокими – в вакууме или с применением водяного пара (для предупреждения их разложения). Кстати, автомобильные бензины А-72, А-76, АИ-93 имеют практически один и тот же фракционный состав. Авиационные бензины отличаются повышенным содержанием легких фракций. Содержание в продукте тех или иных фракций определяется техническими условиями на данный нефтепродукт и зависит от его назначения. Нефти классифицируются по содержанию в них бензиновых, керосиновых и масляных фракций.



Фракционный состав нефтяных смесей определяется обычно простой перегонкой с дефлегмацией или ректификацией; разгонку легких фракций проводят при низких температурах и повышенных давлениях, средних фракций – при атмосферном давлении, тяжелых фракций – в вакууме

 
 

При обработке данных о свойствах нефтей для определения фракций Фр

 

где КГ – коэффициент, учитывающий глубину стабилизации нефти на промысле или потерю нефти в резервуарных парках; n – показатель вязкости, для Башкортостана и Куйбышевской области n = 0,680, Татарстана – 0,685, Саратовской области, Западной и Восточной Сибири – 0,66, Сахалинской области – 0,655, Пермской области и Удмуртии – 0,675, для туркменских, узбекских и таджикских нефтей n = 0,64, Казахстана – 0,675, η 20 и η 50 – динамическая вязкость нефти, соответственно, при температурах 20 и 50°С, Па.

По содержанию серы нефти классифицируются на три класса: малосернистые (до 0,2% серы), сернистые (0,2÷3,0% серы) и высокосернистые (более 3,0%). Сера в нефти находится в виде сероводорода, меркаптанов и сульфидов до 6%, иногда – в свободном виде. Сера и ее соединения активно взаимодействуют с металлами, также вызывая сильную коррозию

 

3. Физико-химические свойства нефти и нефтепродуктов: плотность и молекулярная масса, вязкость, давление насыщенных паров, вязкость



Плотностью называется количество покоящейся массы в единице объема.

На практике часто имеют дело с относительной плотностью нефти и нефтепродукта, которая определяется отношением их массы при температуре определения к массе чистой воды при +4°С, взятой в том же объема. Плотность воды при +4°С имеет наибольшее значение и равна 1000 кг/м3. Относительную плотность принято определять при +20°С, что обозначается символом ρот. Относительная плотность нефтей и нефтепродуктов при +20°С колеблется в пределах от 0,7 до 1,07.

  Нефть (плотность 0.800-0.950 г/см3) Бензин (плотность 0.710-0.750 г/см3)
Керосин (плотность 0.750-0.780 г/см3)
Дизельное топливо (пл. 0.800-0.850 г/см3)
Масляные погоны (пл. 0.910-0.980 г/см3)
Мазут (плотность ~ 0.950 г/см3)
Гудрон (плотность 0.990-1.0 г/см3)
Смолы (плотность > 1.0 г/см3)

 

Существует также понятие относительного удельного веса, численная величина которого равна численной величине относительной плотности. Плотность и удельный вес нефти и нефтепродуктов зависят от температуры. Для пересчета плотности при одной температуре на плотность при другой может служить следующая формула

       
   
 
 

где x – поправка на изменение плотности при изменении температуры на 1°С; r20 – плотность нефти или нефтепродукта при t = +20°С.

Плотность нефтей и нефтепродуктов для практических измерений считается аддитивной величиной.

 

Плотность газа можно определить из соотношения молекулярной массы, выраженной в килограмм-молекулах (кмоль), к общему объему одной килограмм-молекулы, который согласно закону Авогадро составляет 22,412 м3:

Относительная плотность rОТН– отношение плотностей газа rГ к плотности стандартного вещества (например воздуха rВ =1,293кг/м3) при определенных физических условиях.

Значения ρ и ρОТН некоторых простых углеводородов приведены в табл. 1.4. Важность данной характеристики особенно подчеркивается в условиях эксплуатации различного оборудования. Так, например, при утечках в помещениях газы с rОТН < 1 распространяются прежде всего в верхней зоне помещения, а газы с rОТН > 1 (например сжиженные) попадают в каналы, подвалы и т.п. Плотность смеси газов также подчиняется закону аддитивности.

 

 
 

(1.4)
Удельным весом называется вес единицы объема, т.е. сила притяжения к земле единицы объема вещества.

где – r плотность вещества, кг/м; g – ускорение силы тяжести.

Давления насыщенных паров – это давление пара, находящегося в равновесии с жидкостью при данных термодинамических условиях и соотношении объемов фаз. Такая характеристика позволяет судить о склонности нефтей и нефтепродуктов к образованию паровых пробок, например в трубопроводе, потерях при испарении и хранении в резервуарах и т.д., и является основным показателем испаряемости и стабильности товарных нефтепродуктов.

 
 

Давление насыщенных паров рS химически однородных жидкостей и азеотропных (не изменяющих свой состав в процессе испарения) веществ изучено достаточно хорошо. Установлено, что рS зависит от температуры и может быть определено с помощью простой формулы:

 

где рST – давление насыщенных паров при температуре Т; рSTo – давление насыщенных паров при известной температуре То; k – эмпирический коэффициент.

Парциальное давление рi любого компонента в жидкой смеси равно произведению давления насыщенного пара рSi чистого компонента на его мольную концентрацию хi в чистом виде

хiрSi = рSyi. (1.23)

Уравнение (1.23) известно под названием объединенного закона Дальтона – Рауля, согласно которому можно сделать важный вывод – в состоянии равновесия парциальное давление любого компонента смеси в паровой фазе равно парциальному давлению того же компонента в жидкости.

Давление насыщенных паров Рsдля нефтепродуктов в интервале температур (-30÷100) 0С при температуре t с достаточной точностью определяется по формуле Рыбакова

Рst = Р38 · 10 (4,6 – 1430/t), (11.1.6)

где Р38 – давление насыщенных паров нефтепродукта по Рейду.

Вязкостьюназывают свойство жидкости сопротивляться взаимному перемещению ее частиц, вызываемому действием приложенной к жидкости силы.

(1.39)

где t – напряжение внутреннего трения; dv/dR – градиент скорости по радиусу трубы или относительное изменение скорости по направлению, перпендикулярному к направлению течения, т.е. приращением скорости на единицу длины нормали; η – коэффициент (касательное усилие на единицу площади, приложенное к слоям жидкости, отстоящим друг от друга на расстоянии, равном единице длины, при единичной разности скоростей между ними).

Динамической вязкость -абсолютная вязкости, т.к. эта величина выражается в абсолютных единицах

Формула Пуазейля в современной редакции выглядит следующим образом:

где η – коэффициент внутреннего трения (динамическая вязкость); Р – давление, при котором происходило истечение жидкости; τ – время истечения жидкости в объеме V, L – длина капилляра; r – радиус капилляра.

Единицей динамической вязкости является сила, необходимая для поддержания разности скоростей, равной 1 м/с, между двумя параллельными слоями жидкости площадью 1 м2 находящимися друг от друга на расстоянии 1 м, т.е. единицей измерения динамической вязкости в системе СИ является

Н × с/м2 или Па × с.

Единица динамической вязкости, выраженная в физической системе измерения СГС, в честь Пуазейля называется пуазом, т.е. за единицу динамической вязкости принимают сопротивление, которое оказывает жидкость при относительном перемещении двух ее слоев площадью 1 см2, отстоящих друг от друга на 1 см, под влиянием внешней силы в 1 дн при скорости перемещения в 1 см 1 с. Динамическую вязкость при температуре t обозначают ηt.

Приближенное совпадение численного значения динамической вязкости воды при 20°С с 1 сантипуазом (сП) дало повод Бингаму предложить построить систему единиц вязкости, в которой исходной единицей является динамическая вязкость воды при 20°С, принимаемая по Бингаму за 1 сП (точнее η20 воды равна 1,0087 сП). Таким образом, для большинства практических измерений с достаточной точностью можно считать, что η20 воды соответствует 1 сП. Это представляет большое удобство в практической вискозиметрии, для которой большое значение имеют жидкости с постоянными физико-химическими константами, имеющие точно известную вязкость при данной температуре. Из числа относительных обозначений наибольшим распространением пользуется так называемая удельная вязкость, показывающая, во сколько раз динамическая вязкость данной жидкости больше или меньше динамической вязкости воды при какой-то условно выбранной температуре. Таким образом, удельная вязкость представляет собой отвлеченное число.

коэффициент кинематической вязкости, который представляет собой отношение коэффициента динамической вязкости h к плотности жидкости при той же температуре

 
 

 

 

В физической системе единиц широкое применение имеет единица кинематической вязкости в см2 (стокс – Ст.) и мм2 (сантистокс – сСт). Таким образом, 1 ст представляет собой вязкость жидкости, плотность которой равна 1г/1мл и сила сопротивления которой взаимному перемещению двух слоев жидкости площадью 1 см2, находящихся на расстоянии 1 см один от другого и перемещающихся один относительно другого со скоростью 1 см/с, равна 1 дн.

Вязкость нефтей и нефтепродуктов зависит от температуры, увеличиваясь с ее понижением. Наибольшее применение для практических расчетов подучила формула Рейнольдса-Филонова

           
   
(1.42)
 
 
   
(1.43)
 

 

 


где u – коэффициент крутизны вискограммы, 1/К; n*, n – кинематическая вязкость при известной температуре Тж и при температуре Т; e – основание натурального логарифма.

(1.41)
Для нахождения коэффициента крутизны вискограммы для данного продукта достаточно знать значения вязкостей при двух температурах Т1 и Т2..

Динамическая и кинематическая вязкости – это вполне определенные физические характеристики, которые, как и все другие величины, выражены в абсолютных единицах и могут быть подставлены в те или другие расчетные формулы. В случаях, когда вязкость применяется не как расчетная величина, а как практическая характеристика нефтепродукта, ее принято выражать не в абсолютных, а в относительных, или условных, единицах.

 


Дата добавления: 2015-04-18; просмотров: 15; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.012 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты