![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Теорема Хеза.Теорема (Хеза). Пусть Доказательство. Необходимо доказать, что Докажем первое включение. Возьмем произвольный кортеж Докажем обратное включение. Возьмем произвольный кортеж Замечание. В доказательстве теоремы Хеза наличие функциональной зависимости не использовалось при доказательстве включения Т.к. алгоритм нормализации (приведения отношений к 3НФ) основан на имеющихся в отношениях функциональных зависимостях, то теорема Хеза показывает, что алгоритм нормализации является корректным, т.е. в ходе нормализации не происходит потери информации. НФБК Определение 1. Отношение Замечание. Если отношение находится в НФБК, то оно автоматически находится и в 3НФ. Действительно, это сразу следует из определения 3НФ. Пример . Предположим, что нам необходимо учитывать поставки, но каждый акт поставки должен иметь некоторый уникальный номер (назовем его "сквозной номер поставки"). Отношение может иметь следующий вид:
Одним потенциальным ключом данного отношения является, пара атрибутов {PNUM, DNUM}. Другим ключом, в силу уникальности сквозного номера, является атрибут NN. В данном отношении имеются следующие функциональные зависимости: Зависимость атрибутов от первого ключа отношения: {PNUM, DNUM} Зависимости, являющиеся следствием зависимостей от ключей отношения: {PNUM, DNUM} детерминанты всех зависимостей являются потенциальными ключами, поэтому данное отношение находится в НФБК. Особенностью данного отношения является то, что оно имеет два совершенно независимых потенциальных ключа.
|