КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Многозначные зависимости.Определение 2. Пусть - отношение, и , , - некоторые из его атрибутов (или непересекающиеся множества атрибутов). Тогда атрибуты (множества атрибутов) и многозначно зависят от (обозначается ), тогда и только тогда, когда из того, что в отношении содержатся кортежи и следует, что в отношении содержится также и кортеж к . Замечание. Меняя местами кортежи и в определении многозначной зависимости, получим, что в отношении должен содержаться также и кортеж . Таким образом, атрибуты и , многозначно зависящие от , ведут себя "симметрично" по отношению к атрибуту . В отношении "Абитуриенты-Факультеты-Предметы" имеется многозначная зависимость Факультет Абитуриент|Предмет. Словами это можно выразить так - для каждого факультета (для каждого значения из ) каждый поступающий на него абитуриент (значение из ) сдает один и тот же список предметов (набор значений из ), и для каждого факультета (для каждого значения из ) каждый сдаваемый на факультете экзамен (значение из ) сдается одним и тем же списком абитуриентов (набор значений из ). Именно наличие этой зависимости не позволяет независимо вставлять и удалять кортежи. Кортежи обязаны вставляться и удаляться одновременно целыми наборами. Замечание. Если в отношении имеется не менее трех атрибутов , , и есть функциональная зависимость , то есть и многозначная зависимость . Действительно, действуя формально в соответствии с определением многозначной зависимости, предположим, что в отношении содержатся кортежи и . В силу функциональной зависимости отсюда следует, что . Но тогда кортеж в точности совпадает с кортежем и, следовательно, содержится в отношении . Таким образом, имеется многозначная зависимость . Таким образом, понятие многозначной зависимости является обобщением понятия функциональной зависимости. Определение 3. Многозначная зависимость называется нетривиальной многозначной зависимостью, если не существует функциональных
|