КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Характер движения жидкости в межлопастном пространстве.Центробежный насос не обладает самовсасывающей способностью, поэтому перед началом действия их необходимо заполнять жидкостью. Они устанавливаются ниже уровня цистерны и снабжаются вакуумной ступенью или вакуумным насосом. Когда насос заполнен, происходит следующее: жидкость из всасывающего трубопровода со скоростью 2-3 м/с поступает в подводящее устройство. Здесь с целью предотвращения закрутки потока и сохранения оси симметрии скорость жидкости увеличивается на 10-15%, затем через воронку колеса поток жидкости поступает в межлопастные каналы, где на жидкость действуют силы: тяжести, вязкости, инерции окружного движения, давления лопастей и центробежная. В результате действия указанных сил на каждую частицу жидкости её движение в каналах приобретает сложный пространственный характер (трёхмерный поток). Основных сил две: сила давления лопастей, которая вовлекает жидкость в переносное окружное движение и сообщает жидкости окружную скорость; возникающая центробежная сила, вовлекающая жидкость в поступательное движение в направлении периферии колеса. Движение жидкости в межлопастных каналах сопровождается увеличением скорости до 1 порядка. С такой скоростью жидкость выходит в отводящее устройство. Здесь скорость жидкости преобразуется в давление, после чего поток направляется в нагнетательный трубопровод. Когда насос работает с воздухом, происходит то же самое, но плотность воздуха меньше жидкости в 800 раз. Центробежные силы оказываются незначительными, недостаточными для создания разряжения в корпусе насоса, необходимого для всасывания. Поэтому все центробежные насосы не обладают самовсасывающей способностью, и при попадании в рабочую полость насоса воздуха, насос срывает. 1- корпус 1А – подводящее устройство 1Б – отводящее устройство 1В – камера уплотнения вала 2 – рабочее колесо 2А – задний диск рабочего колеса 2Б – лопасть (лопатка) рабочего колеса 2В – воронка 2Г – передний диск рабочего колеса Выражение для напора –потому что при конечном числе лопастей траектории частиц находятся на удалении от лопастей будут иметь траектории, отличающиеся от профиля лопастей –при конечном числе лопастей в межлопастных каналах под действием сил инерции окружного движения возникнет циркуляционное движение жидкости, противоположное направлению вращения колеса. Различают 3 вида потерь: трение, входа и выхода жидкости, вихреобразования. 1. Потери трения – следствие трения между слоями жидкости, между стенками насоса и жидкостью. 2. Потери входа и выхода – изменение величины и направления скорости. 3. Потери вихреобразования – следствие отрыва жидкости от лопастей в зонах пониженного давления. Гидравлические потери снижают энергию потока и уменьшают КПД насоса. Гидравлические потери учитывают введением КПД:
Для центробежных насосов Величина гидравлических потерь зависит от степени гидродинамического совершенства формы межлопастных каналов рабочего колеса и формы отвода и, второе, от степени шероховатости стенок. Гидравлический КПД насоса учитывает не только потери в межлопастных каналах, но также потери в отводящем устройстве, так как выделить и измерить эти потери в отдельности невозможно. Предпочтительно пользоваться характеристиками, полученными экспериментальным путем. Отличающийся высокой сложностью процесс движения жидкости в каналах колёс центробежного насоса не имеет точного масштабного описания, которое позволило бы только расчетным путём находить оптимальные геометрические параметры рабочих колёс. Данные для уточнения расчётов получают опытным путём в результате испытания моделей насосов, создаваемых для этой цели. Такой путь создания центробежных насосов не является единственным. Это объясняется тем, что расчёт центробежных насосов производится с испытанием законов подобия. Это позволяет подобрать модель с высокими параметрами из числа существующих насосов и пересчитать размеры насоса на условия работы с использованием уравнений подобия. Подобие предполагает: 1. Геометрическое подобие проточных частей; 2. Кинематическое и динамическое подобия потоков жидкости. Геометрическое подобие предполагает постоянство пропорциональности любых соответствующих линейных размеров и углов проточных частей рабочих колёс. Для линейных размеров это условие выражается отношением:
Кинематическое подобие предполагает постоянство пропорциональностей скоростей жидкости:
Для переносных окружных скоростей это условие выражается отношением:
Динамические подобия предполагают постоянство пропорциональностей сил, действующих на жидкость в любых соответствующих точках потока. Принимая во внимание условия подобия и используя выражения для подачи, получаем:
Решая их, получаем основные уравнения подобия колёс центробежных насосов.
где Если насос при напоре Все центробежные насосы с одинаковой величиной
Подача насоса простого действия отличается неравномерностью. Неравномерность оценивается величиной отношения:
где:
Степень неравномерности подачи зависит от кратности действия.
Движение жидкости в межлопастных каналах сопровождается приращением её скорости на величину до 1-го порядка. Для повышения давления жидкости её скорость необходимо понизить. Понижение ск4орости в ространстве за колесом осуществляется с помощью отводящего устройства. Для пояснения этого процесса рассмотрим движение жидкости в свободном пространстве за колесом. При этом допускают, что жидкость идеальная невязкая, и её движение за колесом струйное, осесимметричное. В пространстве за колесом, лопасти на жидкость не действуют, поэтому её частицы будут иметь только окружную скорость
Для анализа изменения скорости жидкости используется выражение для моментов количества движения. Аналогично для анализа окружной составляющей движения используется закон сохранения моментов количества движения.
где, Идеальная жидкость перемещается с
где
Для исследования изменения радиальной составляющей скорости используется закон сохранения массы. Закон сохранения массы предполагает постоянство расхода жидкости в любом сечении потока:
Изменяется абсолютная скорость, т.е. она уменьшается прямо пропорционально удалению жидкости от оси вращения колеса. Устройство должно иметь форму, обеспечивающую удаление жидкости от оси вращения колеса.
|