КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Работа. Кинетическая энергия частицы.Кинети́ческая эне́ргия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением. и/или Механическая энергия бывает двух видов: кинетическая и потенциальная. Кинетическая энергия (или энергия движения) определяется массами и скоростями рассматриваемых тел. Потенциальная энергия (или энергия положения) зависит от взаимного расположения (от конфигурации) взаимодействующих друг с другом тел. Работа определяется как скалярное произведение векторов силы и перемещения. Скалярным произведением двух векторов называется скаляр равный произведению модулей этих векторов и косинус угла между ними. Понятия энергии и работы тесно связаны друг с другом. Кинетическая энергия частицы доп. работа результирующей всех сил, действующих на частицу, идет на приращение кинетической энергии частицы.
№10Момент импульса тела, вращающегося вокруг неподвижной оси. Момент импульса материальной точки относительно точки O определяется векторным произведением Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса): Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело: №11 Момент импульса системы. Закон сохранения момента импульса. Монет импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц: Используя формулу vi = ωri, получим т. е. 2) Таким образом, момент импульса твердого тела относительно оси равен моменту инерции тела относительно той же оси, умноженному на угловую скорость. Продифференцируем уравнение (2) по времени: т. е. Эта формула - еще одна форма уравнения динамики вращательного движения твердого тела относительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси. Можно показать, что имеет место векторное равенство (3) В замкнутой системе момент внешних сил и откуда (4) Выражение (4) представляет собой закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени. Закон сохранения момента импульса также как и закон сохранения энергии является фундаментальным законом природы. Он связан со свойством симметрии пространства - его изотропностью, т. е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).
№12 Момент импульса и момент силы относительно точки и оси. Уравнение моментов. Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:
Рис.1 Модуль вектора момента импульса Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса Lz не зависит от положения точки О на оси z. При вращении абсолютно твердого тела вокруг неподвижной оси z каждая точка тела движется по окружности постоянного радиуса riсо скоростью vi . Скорость vi и импульс mivi перпендикулярны этому радиусу, т. е. радиус является плечом вектора mivi . Значит, мы можем записать, что момент импульса отдельной частицы равен Монет импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц: Таким образом, момент импульса твердого тела относительно оси равен моменту инерции тела относительно той же оси, умноженному на угловую скорость. Продифференцируем уравнение (2) по времени: т. е. Эта формула - еще одна форма уравнения динамики вращательного движения твердого тела относительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси. Момент силы. Момент силы относительно точки . Определение моментов сил: , .
№13 Момент инерции твердого тела. Момент инерции — скалярная физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости). Единица измерения СИ: кг·м². Обозначение: I или J. Различают несколько моментов инерции — в зависимости от многообразия, от которого отсчитывается расстояние точек. Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси: , где: § mi — масса i-й точки, § ri — расстояние от i-й точки до оси. Осевой момент инерции тела Ja является мерой инертности тела вовращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении. , где: § — масса малого элемента объёма тела , § — плотность, § — расстояние от элемента до оси a. Если тело однородно, то есть его плотность всюду одинакова, то
№14 Уравнение динамики твердого тела, вращающегося вокруг неподвижной оси.
Момент силы. Момент силы относительно точки . Определение моментов сил: , . Уравнение динамики твердого тела, вращающегося вокруг неподвижной оси:
№15 Момент инерции. Теорема Штейнера. Момент инерции. Твердое тело можно представить в виде системы жестко связанных между собой материальных точек. где: § mi — масса i-й точки, § ri — расстояние от i-й точки до оси. Для расчета момента инерции используют интегрирование: Единица измерения СИ: кг·м².
|