КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Предел суммы, произведения и частного функции.Теорема 2. Теорема 3. Теорема 4. при Доказательство теоремы 2. Представим f(x) = A + a(x), g(x) = B + b(x), где , тогда f(x) ± g(x) = (A + B) + a(x) + b(x) A + B = const, a(х) + b(х) – бесконечно малая, значит Теорема доказана. Доказательство теоремы 3. Представим f(x) = A + a(x), g(x) = B + b(x), где , тогда A×B = const, a(х) и b(х) – бесконечно малые, значит Теорема доказана. Доказательство: Из теоремы о связи между пределом и бесконечно малой величиной следует: ; Получаем: 7. Первый замечательный предел.
Так как , то . Следствия из теоремы: 1) 2) 3) 4) 5) 8.Второй замечательный предел. Число "е". Доказательство: Бином Ньютона: , где . Используем бином Ньютона для доказательства неравенства: Отсюда заключаем, что , а значит . Следствия из теоремы: 1) 2) 3) 4) Число е. Рассмотрим последовательность {xn} = . Если последовательность {xn} монотонная и ограниченная, то она имеет конечный предел. По формуле бинома Ньютона: или, что то же самое Покажем, что последовательность {xn} – возрастающая. Действительно, запишем выражение xn+1 и сравним его с выражением xn: Каждое слагаемое в выражении xn+1 больше соответствующего значения xn, и, кроме того, у xn+1 добавляется еще одно положительное слагаемое. Таким образом, последовательность {xn} возрастающая. Докажем теперь, что при любом n ее члены не превосходят трех: xn < 3. Итак, последовательность - монотонно возрастающая и ограниченная сверху, т.е. имеет конечный предел. Этот предел принято обозначать буквой е. Из неравенства следует, что е £ 3. Отбрасывая в равенстве для {xn} все члены, начиная с четвертого, имеем: переходя к пределу, получаем Таким образом, число е заключено между числами 2,5 и 3. Если взять большее количество членов ряда, то можно получить более точную оценку значения числа е. Можно показать, что число е иррациональное и его значение равно 2,71828… Аналогично можно показать, что , расширив требования к х до любого действительного числа: Предположим: Найдем Число е является основанием натурального логарифма. Выше представлен график функции y = lnx.
|