КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Главные оси и главные моменты инерцииРассмотрим, как изменяются моменты инерции плоского сечения при повороте осей координат из положения x и y к положению u и v. Из рис. легко установить, что u = y sin a + x cos a; v = y cos a - x sin a . (3.10) Из выражений: с учетом (3.10) после несложных преобразований получим: (3.11) Складывая первые два уравнения, получим: Iu + Iv = Ix + Iy = Ir , (3.12) где ; Ir - полярный момент инерции сечения, величина которого, как видно, не зависит от угла поворота координатных осей. Дифференцируя в (3.11) выражение Iu по a и приравнивая его нулю, находим значение a = a0 , при котором функция Iu принимает экстремальное значение: . (3.13) С учетом (3.12) можно утверждать, что при a = a0 один из осевых моментов Iu илиIv будет наибольшим, а другой наименьшим. Одновременно при a = a0 Iuvобращается в нуль, что легко установить из третьей формулы (3.11). Декартовы оси координат, относительно которых осевые моменты инерции принимают экстремальные значения, называются главными осями инерции.Осевые моменты инерции относительно главных осей называются главными и определяются из (3.11) с учетом (3.13) и имеют вид: . (3.14)
|