КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Логические и семантические парадоксы. Рациональное мышление и чувственные данныеПроблема соотношения мышления чувств. Еще древние греки заметили трудности описания мира рациональным образом. Так Парменид указывал на сильное различие между подлинной истиной, являющейся продуктом рационального освоения действительности, и мнением, основанном на чувственном познании. Чувственные данные дают нам образ лишь кажущегося состояния вещей. С помощью чувственного познания нельзя постичь подлинную сущность вещей. Известна апория Ахиллес-черепаха, в которой Ахиллес должен пройти за конечное время бесконечное число отрезков. Все логические парадоксы имеют общее свойство, которые можно определить, как самоприменение или самоотносимость. Т.е. сущность, о которой идет речь, определяется или характеризуется посредством некоторой совокупности, которой она сама принадлежит. Ярким примером логического научного вывода, который противоречит обыденным чувственным представлениям, является вывод о свойствах объектов в n-мерном пространстве. Рассмотрим на плоскости квадрат со стороной 2. n=2. О(0;0), углы (±2, ±2). По углам впишем окружности радиусом 1, их центры (±1,±1). Центр окружности: . d={расстояние до ближайшей окружности}= Теперь рассмотрим куб. n=3. . Рассмотрим n-мерное пространство, в нем рассмотрим n-мерный куб со стороной 4, по углам которого описано единичной сферы. Определим радиус сферы, который касается всех этих сфер, получаем: . При n=10 это выражение rn>2, т.е. вписанная по построению в n-мерный куб сфера выходит за его границы. Маленькая сфера выходит за размеры куба. Можно показать, что при n→∞ объем n-мерного куба будет намного меньше, чем объем n-мерной сферы. Вывод: Рассуждения, которые подтверждены данными науки, противоречат обыденным представлениям о метрических соотношениях объектов. Наши макропредставления неприемлемы к n-мерному пространству. Теория Бреммермана В ней рассматривается физическое ограничение на объем вычислений. Любая активная деятельность, связанная с обработкой, хранением и воспроизведением информации должна основываться на материальном носителе. Вопрос: сколько битов информации n может храниться в теле m? Это число из современных физических соображений: Emax— max. количество энергии, которую мы можем извлечь из тела массой m. E=mc2; DE—разрешение, с которым мы можем наблюдать один энергетический уровень и 1 бит кодируется одним энергетическим уровнем DE×Dt³h—соотношение неопределенностей Гейзенберга и h-постоянная Планка, Dt—продолжительность наблюдения. Разделив формулы друг на друга получаем формулу: Значит, что компьютер массой в 1г за секунду не сможет обработать > чем 2×1047бит. Пример парадоксального расчета Возраст Вселенной оценивается на 1017сек, ее масса оценивается 1058г. Получаем результат: Вселенная смогла бы обработать за время свой жизни 10122бит. Возьмем аэропорт: за сутки 1000 запросов типа (да/нет). Таким аэропортом управляет 20 диспетчеров. Вопрос: какое количество информации проходит через них? Полное число всевозможных ответов на такие запросы определяется известной формулой количества булевых функций от 1000 переменных: .Определим количество информации: Это число больше 10122
|