КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Дайте общую математическую формулировку задач дискретного программированияКласс задач оптимизации, в которых область определения переменных состоит из отдельных изолированных точек, составляет предмет изучения дискретного программирования. Широкий класс нелинейных и дискретных задач может решаться с использованием идеи рекуррентного подхода (методов типа математической индукции), являющихся основой динамического программирования, идея которого первоначально была предложена Р. Беллманом[1]. Постановка задачи дискретного программирования.Многиезадачи системного анализа, такие как распределение ресурсов, задачи сетевого планирования и управления, календарного планирования, описываются математическими моделями дискретного программирования. Рассмотрим общую задачу максимизации. Найти (П.1) при условиях (П.2) (П.3) где D - некоторое множество R(n) Если множество D является конечным или счетным, то условие (П.3) - это условие дискретности, и данная задача является задачей дискретного программирования (ЗДП). Чаще всего условие дискретности разделено по отдельным переменным следующим образом: (П.4) где D - конечное (или счетное) множество. Если вводится ограничение х; - целые числа (j=l,2,..., n), то приходят к задачам целочисленного программирования (ЦП), которое является частным случаем дискретного программирования.
|