Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Спектрофотометры со сферической геометрией




 

Для реализации диффузного освещения в спектрофотометрах применяется интегрирующая сфера. Согласно требованиям Международной комиссии по освещению она может иметь любой диаметр при условии, что суммарная площадь отверстий не превышает 10% ее внутренней отражающей поверхности. В портативных приборах диаметр сферы составляет 40­50 мм, в настольных — 150 мм и более.

Внутри сфера, как правило, покрыта сульфатом бария, коэффициент отражения которого в видимой части спектра составляет около 98,5%. При изготовлении сферы наносится до 10 слоев сульфата бария, однако естественный процесс старения материала приводит к тому, что покрытие сферы со временем приобретает желтый оттенок. Поэтому ранее напыление сферы обновлялось каждые 3-5 лет. Современные двухлучевые спектрофотометры этого не требуют.

В настоящее время разрабатываются новые материалы для покрытия сферы, которые могли бы заменить сульфат бария. Например, проводятся испытания галона — разновидности порошкообразного политетрафторэтилена (РТFE), — который немного светлее сульфата бария, однако имеет низкую кроющую способность, поэтому покрытие должно иметь толщину в несколько миллиметров.

 

Рис. 7.2.14. Принципиальная схема двулучевого спектрофотометра с геометрией D/8

В качестве источника излучения, как правило, используется импульсная ксеноновая лампа с фильтрами, позволяющими эмулировать стандартизированные излучения, например D65. Для контроля УФ­составляющей применяются УФ­фильтры, не пропускающие излучение с длиной волны меньше определенной величины. УФ­фильтры дают возможность выполнять оценку эффекта люминесценции. Для того чтобы на образец попадал только рассеянный свет, перед источником излучения в осветительном отверстии сферы устанавливается рассеивающий экран.

Измеряемый образец помещается в измерительное отверстие сферы. Обычно диаметр этого отверстия на 4 мм больше диаметра отверстия для приемника света. Это позволяет учесть свет, отраженный не поверхностными, а глубинными слоями материала измеряемого объекта.

 

Рис. 7.2.15. Настольный спектрофотометр GretagMacbeth Color-Eye 7000A

Современные приборы со сферической геометрией строятся по схеме D/8 — наблюдение выполняется под углом 8° относительно нормали к поверхности образца. Угол наблюдения принят отличным от нуля для возможности исключения из результатов наблюдения зеркально отраженного света. Это становится возможным благодаря расположенной симметрично к приемнику света относительно нормали к поверхности образца ловушки для блеска — так называемому зеркальному порту. При открытой ловушке на образец не попадает свет под углом 8°, поэтому отраженный поток должен состоять только из диффузного света. При закрытой ловушке (используется специальная покрытая сульфатом бария заглушка) измерения выполняются с учетом зеркальной составляющей. В первом случае геометрию принято обозначать D/8:e (Specular Component Excluded), во втором — D/8: i (Specular Component Included).

 

Рис. 7.2.19 Портативный спектрофотометр X-Rite SP62

Современные спектрофотометры со сферической геометрией, как правило, являются двулучевыми. Второй луч используется для оценки света, отраженного от стен сферы. Он выходит из сферы через специальное боковое отверстие и с помощью направляющего зеркала попадает на спектральный анализатор, идентичный спектральному анализатору света, отраженного образцом. Использование второго луча позволяет измерять коэффициент отражения образца по отношению отраженного от образца света к свету, отраженному сферой. Измерения с использованием двухлучевой схемы являются более точными по сравнению с результатами, полученными с использованием однолучевых приборов, поскольку при этом значительно уменьшаются погрешности, обусловленные дрейфом характеристик электронных компонентов, изменением спектра источника излучения, а также отклонением оптических характеристик интегрирующей сферы.

В современных спектральных анализаторах для разложения излучения на спектральные составляющие используются характеризующиеся высоким разрешением вогнутые голографические решетки. Разложенный на спектральные составляющие свет фокусируется на фотодиодную линейку. После этого информация преобразуется в цифровой вид, анализируется и обрабатывается.

Спектрофотометры со сферической геометрией эффективны не только при измерении металлизированных или люминесцентных поверхностей. Использование диффузного освещения, например, сводит к минимуму погрешности измерения объектов с текстурой, что может быть востребовано при печати на многих упаковочных материалах.

 


Поделиться:

Дата добавления: 2015-05-08; просмотров: 65; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты