КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
I. Основные принципы метода электронной микроскопииРазрешающая способность светового микроскопа ограничена длиной световых волн. Максимально возможное разрешение равно половине длины волны используемого света. Таким образом получить изображение объекта размером меньше, чем эта величина невозможно. Средняя величина волны видимого света составляет примерно 550 нм, поэтому в конце ХIХ века могли получить разрешение примерно 200 нм (разрешение - это расстояние, на котором две течки видны раздельно). Незначительное увеличение разрешающей способности было достигнуто благодаря изобретению ультрафиолетового микроскопа длина волны УФ-света составляет 250 нм), обеспечивающего разрешение в 100 нм. Однако многие клеточные структуры имеют меньшие размеры. Эта проблема была решена в тридцатые годы, когда создание электронного микроскопа произвело революцию в биологической науке. Вместо светового излучения в электронном микроскопе используют пучок электронов, у которых длина волны значительно меньше, следовательно, и разрешающая способность значительно больше. Длина волны зависит и от напряжения, подаваемого для генерации электронного пучка, но практически можно, получить разрешение в 0.5 нм, т.е. примерно в 500 раз больше, чем в световом микроскопе. Создаваемое увеличение достаточно, чтобы различить крупные молекулы. Лимитирующим фактором в достижении большего увеличения стало и остается до сих пор не усиление разрешающей способности микроскопа, а методы подготовки образца для исследования. В сущности, принцип действия электронного микроскопа таком же, как и светового, в котором пучок световых лучей направляется линзой конденсора через образец, а полученное изображение затем увеличивается с помощью линз. При работе на электронном микроскопе оператор сидит лицом к колонне, по которой проходит лучок электронов. Источник электронов находится в верхней части колонны, а сам образец - внизу. На вольфрамовую нить накала подается высокое напряжение (около 50000 В), и нить накала излучает поток электронов. Чтобы сфокусировать эти электроны, необходимы уже не стеклянные линзы, а электромагниты. Внутри колонны создается глубокий вакуум, чтобы сократить до минимума рассеивание электронов из-за столкновения с частицами воздуха и происходящее за этот счет нагревание. Втрансмиссионном (просвечивающем) микроскопе электроны проходят через образец, поэтому для изучения можно использовать только очень тонкие образцы. Части образца с относительно высокой молекулярной массой в наибольшей степени вызывают рассеяние электронов, поэтому для увеличения контрастности образцы пропитывают (окрашивают) тяжелыми металлами (свинец или уран). Электроны невидимы для человеческого глаза, поэтому они направляются на опалесцирующий экран, который воспроизводит видимое изображение, или же непосредственно на фотопленку, чтобы получить постоянный фотоснимок (электронную микрофотографию).
|