КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Колебательное затухающее звено, апериодическое звено 2-го порядкаЭто такое звено, у которого при скачкообразном изменении х,выходная величинана – у изменится в колебательном режиме с постоянным периодом и с амплитудой затухающего колебания по экспоненте. Динамическая характеристика имеет вид: Т02*d2y/dt2+T*dy/dt+y=к*х. Это уравнение 2-го порядка, звено имеет 2 емкости – Т0 и Т. Для решения уравнения необходимо получить передаточную функцию и характерное уравнение для данного звена. Передаточная функция: Т02*р02*у(р)+Т*р*у(р)+у(р)=к*х(р) W(р)=у(р)/х(р)=к/(Т02*р2+Т*р+1). Характерное уравнение (когда знаменатель=0): Т02*р2+Т*р+1=0. Найдем корни: Р1,2=-Т/(2*Т02)± y=кх*[1 - ω0/ω*е-αt*sin(ω*t+arctg ω/α)]. График переходного процессса (х=const):
Пример: двухъемкостные статические объекты, электродвигатели переменного тока (асинхронные). Апериодическое звено 2-го порядка: Динамическая характеристика данного звена имеет вид: Т02*d2y/dt2+T*dy/dt+y=к*х. Характеристическое уравнение данного звена: Т02*р2+Т*р+1=0. Соотношение постоянных времени имеет следующий вид: Т1>2Т0. Корни характеристического уравнения будут вещественными и отрицательными: Р1,2=-α±γ, α=-Т1/2Т0, γ=
|