Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Бесконечно большие величины




 

Определение. Функция f(x) называется бесконечно большой величиной в какой-то точке a прикосновения множества допустимых значений х, если для любого сколь угодно большого числа М>0 можно указать такую окрестность в точке a, в которой при всех допустимых x выполняется неравенство |f(x)|>M.

Иногда говорят, что бесконечно большой величиной называется переменная величина, абсолютное значение которой неограниченно возрастает. Однако неограниченная функция не обязательно бесконечно большая. Например, функция х sinх – неограниченная (ее значения могут быть как угодно большими), но не является бесконечно большой при х®∞, так как с ростом х функция все время колеблется.

Предел бесконечно большой величины равен бесконечности: .

Зная определение предела функции при х®а и при х®∞, дадим развернутое определение бесконечно большой величины с помощью кванторов:

при х®а:

,

при х®:

.

Пример. Функция у = tg x есть бесконечно большая величина при : .


Поделиться:

Дата добавления: 2015-07-26; просмотров: 132; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты