КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
ТЕМА 7. МАТЕМАТИЧЕСКИЕ ПОНЯТИЯСодержание 1. Математические понятия. Объем и содержание понятия. 2. Отношения рода и вида между понятиями. 3. Определение понятий. 4. Требования к определению понятий. 5. Контекстуальные и остенсивные определения. Основная литература [7, 14, 16, 24, 25, 30, 33, 34]; Дополнительная литература [26, 44] Математические понятия. Объем и содержание понятия Изучая математику в школе, колледже, вузу, необходимо усвоить определенную систему понятий, предложений и доказательств, но чтобы овладеть этой системой и затем успешно применять приобретенные знания и умения, обучая младших школьников и решая задачу их развития средствами математики, нужно сначала понять, каковы особенности математических понятий, как устроены их определения, предложения, выражающие свойства понятий, и доказательства. Всякий математический объект обладает определенными свойствами. Например, квадрат имеет четыре стороны, четыре прямых угла, равные диагонали. Можно указать и другие свойства квадрата. Среди свойств объекта различают свойства существенныеи несущественные для его выделения из других объектов. Свойство считают существеннымдля объекта, если оно присуще этому объекту и без него он не может существовать. Несущественные свойства – это такие свойства, отсутствие которых не влияет на существование объекта. Так, например, названые свойства квадрата являются существенными, а свойство «сторона АВ квадрата является вертикальной» несущественное. Если квадрат повернуть, то сторона АВ окажется расположенной по – другому. (Рис. 1)
В В С
А С
А D D Рис. 1 Поэтому, чтобы понимать, что представляет собой данный математический объект достаточно знать его существенные свойства. В этом случае говорят, что имеется понятие об этом объекте. Когда говорят о математическом объекте, то обычно имеют в виду всю совокупность объектов, обозначаемых одним термином, словом, названием. Так, когда говорят о квадрате, то имеют в виду все геометрические фигуры, являющиеся квадратами. Совокупность всех квадратов составляет объем понятия квадрата.
|