КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Температурное поле. Теплопроводность представляет собой процесс распространения энергии между частицами тела, находящимися друг с другом в соприкосновении и имеющими различные
Теплопроводность представляет собой процесс распространения энергии между частицами тела, находящимися друг с другом в соприкосновении и имеющими различные температуры. Рассмотрим нагрев какого-либо однородного и изотропного тела (в дальнейшем будем рассматривать только такие тела). Изотропным называют тело, обладающее одинаковыми физическими свойствами по всем направлениям. При нагреве такого тела температура его в различных точках изменяется во времени и теплота распространяется от мест с более высокой температурой к местам с более низкой температурой. Из этого следует, что в общем случае процесс передачи теплоты теплопроводностью в твердом теле сопровождается изменением температуры как в пространстве, так и во времени, т.е. , (1.1) где t – температура произвольной точки вещественной среды; х, у, z – пространственные координаты; – время. Эта функция определяет температурное поле в рассматриваемом теле. В математической физике температурным полем называют совокупность значений температуры в данный момент времени для всех точек изучаемого пространства, в котором протекает процесс. Если температура тела есть функция координат и времени, то температурное поле тела будет нестационарным, т. е. зависящим от времени: ; (1.2) Такое поле отвечает неустановившемуся тепловому режиму теплопроводности. Если температура тела есть функция только координат и не изменяется с течением времени, то температурное поле тела будет стационарным: ; (1.3) Уравнение двухмерного температурного поля для режима: стационарного ; ; ; нестационарного ; ; .
На практике встречаются задачи, когда температура тела является функцией одной координаты, тогда уравнение одномерного температурного поля для режима: нестационарного ; ; ; ; стационарного ; ; ; . (1.4)
Одномерной, например, является задача о переносе теплоты в стенке, у которой длина и ширина бесконечно велики по сравнению с толщиной.
|