КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Аномалии рефракцииПри нормальной рефракции параллельные лучи от далеко расположенных предметов собираются на сетчатке в центральной ямке, такой глаз называется эммеягропическим. К нарушениям рефракции относится миопия, или близорукость, когда параллельные лучи фокусируются не на сетчатке, а впереди нее (рис. 31). Это возникает при чрезмерно большой длине глазного яблока или преломляющей силе глаза. Близкие предметы близорукий видит хорошо, а удаленные — расплывчато. Коррекция миопии — использование рассеивающих двояковогнутых линз. Гиперметропия, или дальнозоркость — это такое нарушение рефракции, когда параллельные лучи от далеко расположенных предметов из-за малой длины глазного яблока или слабой преломляющей способности глаза фокусируются за сетчаткой, Для коррекции гиперметро-пии используются двояковыпуклые, собирающие линзы. Существует старческая дальнозоркость, или пресбиопия, связанная с потерей хрусталиком эластичности, который плохо изменяет свою кривизну при натяжении цинновых связок. Поэтому точка ясного видения находится не на расстоянии 10 см от глаза, а отодвигается от него и близко расположенные предметы видны расплывчато. Для коррекции пресбиопии пользуются двояковыпуклыми линзами. Рис. 31. Аномалия рефракции и их коррекция Ход лучей в эмметропическом (А), мистическом [Б); гиперметропиче-ском (В) глазах; Г и Д — коррекция близорукости и дальнозоркости с помощью линз Световоспринимающий, или рецешпорный, аппарат глаза Он представлен сетчаткой. Фоторецепторные клетки — палочки и колбочки состоят из двух сегментов — наружного, чувствительного к действию света и содержащего зрительный пигмент, и внутреннего, в котором находятся ядро и митохондрии, отвечающие за энергетический процесс в клетке. Особенность топографии палочек и колбочек состоит в том, что они обращены своими наружными светочувствительными сегментами к слою пигментных клеток, т.е. в сторону, противоположную свету. Палочки более чувствительны к свету, чем колбочки. Так, палочку может возбудить всего один квант света, а колбочку — больше сотни квантов. При ярком дневном свете максимальной чувствительностью обладают колбочки, которые сконцентрированы в области желтого пятна или центральной ямки. При слабом освещении в сумерках наиболее чувствительна к свету периферия сетчатки, где находятся в основном палочки. При действии кванта света в рецепторах сетчатки происходит цепь фотохимических реакций, связанных с распадом зрительных пигментов родопсина и йодопсина и их ресинтез в темноте. Родопсин — пигмент палочек — высокомолекулярное соединение, состоящее из ретиналя — альдегида витамина А и белка опсина. При поглощении кванта света молекулой родопсина 11 - цис-ретиналь выпрямляется и превращается в транс-ретиналь. Это происходит в течение I-12ceK. Белковая часть молекулы обесцвечивается и переходит в состояние метародопсина II, который взаимодействует с примембранным белком гуанозинтрифосфатсвязанным белком трансдуцином. Последний запускает реакцию обмена гуано зиндифос фата (ГДФ) на гуанозинтрифосфат (ГТФ), что приводит к усилению светового сигнала. ГТФ вместе с трансдуцином активирует молекулу примембранного белка — фермента фосфодиэстеразы (ФДЭ), который разрушает молекулу циклического гуанозинмонофосфата (цГМФ), вызывая еще большее усиление светового сигнала. Падает содержание цГМФ и закрываются каналы для Na+ и Са2+, что приводит к гиперполяризации мембраны фоторецептора и возникновению рецепторного потенциала. Возникновение гиперполяризации на мембране фоторецептора отличает его от других рецепторов, например слуховых, вестибулярных, где возбуждение связано с деполяризацией мембраны. Гиперполяризационный рецепторный потенциал возникает на мембране наружного сегмента, далее распространяется вдоль клетки до ее пресинаптического окончания и приводит к уменьшению скорости выделения медиатора-глутамата. Для того чтобы рецепторная клетка могла ответить на следующий световой сигнал, необходим ресинтез родопсина, который происходит в темноте (темновая адаптация) из цис-изомера витамина А1, поэтому при недостатке в организме витамина А1 развивается недостаточность сумеречного зрения («куриная слепота»). Фоторецепторы сетчатки связаны с биполярной клеткой с помощью синапса. При действии света уменьшение глутамата в пресинаптическом окончании фоторецептора приводит к гиперполяризации постсинаптической мембраны биполярной нервной клетки, которая также синаптически связана с ганглиозными клетками. В этих синапсах выделяется ацетилхолин, вызывающий деполяризацию постсинаптической мембраны ганглиозной клетки. В аксональном холмике этой клетки возникает потенциал действия. Аксоны ганглиозных клеток образуют волокна зрительного нерва, по которым в мозг устремляются электрические импульсы. Различают три основных типа ганглиозных клеток, отвечающих на включение света (оn-ответ); на выключение света (off-ответ) и на то и другое (on/off-ответ) учащением фоновых разрядов. В центральной ямке каждая колбочка связана с одной биполярной клеткой, которая, в свою очередь — с одной ганглиозной. Это обеспечивает высокое пространственное разрешение, но резко уменьшает световую чувствительность. К периферии от центральной ямки с одной биполярной клеткой контактирует множество палочек и несколько колбочек, а с ганглиозной — множество биполярных, образующих рецептивное поле ганглиозной клетки. Это повышает световую чувствительность, но ухудшает пространственное разрешение. В слое биполярных клеток располагаются два типа тормозных нейронов — горизонтальные и амакриновые клетки, ограничивающие распространение возбуждения в сетчатке. Суммарный электрический потенциал всех элементов сетчатки называется электроретинограммой (ЭРГ). Она может быть зарегистрирована как от целого глаза, так и непосредственно от сетчатки. По ЭРГ можно судить об интенсивности цвета, размере и длительности действия светового сигнала. Она широко используется в клинике для диагностики и контроля лечения заболеваний сетчатки.
|