Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Уравнение неразрывности в дифференциальной форме




Читайте также:
  1. Аграрная политика царского правительства в крае и расхищение башкирских земель в пореформенный период
  2. Адиабатный процесс. Уравнение адиабаты идеального газа. Работа идеального газа при адиабатическом изменении его объема.
  3. Активная зона реактора в форме шара.
  4. Анатомически узкий таз. Этиология. Классификация по форме и степени сужения. Диагностика. Методы родоразрешения.
  5. Артезианские бассейны платформенного типа. Гидрогеодинамическая и гидрогеохимическая зональность бассейна.
  6. Бюджетная линия потребителя. Наклон бюджетной линии. Понятие бюджетного множества. Уравнение бюджетной линии.
  7. В широком смысле: рынок – это сложный механизм движения благ и услуг в форме товарно – денежных отношений.
  8. В этой стандартной форме десенсибилизации используется способности клиента к имажинации - способности живо представлять себе свое участие в той или иной ситуации.
  9. Виды денег. Уравнение Фишера
  10. Вина в форме неосторожности.

В потоках несжимаемой жидкости, в которых нет ни оттока, ни присоединения расхода, объемный расход в любом сечении постоянный. Можно поэтому предположить, что в каждой точке внутри потока должно выполняться соотношение, гарантирующее, что в ней не происходит ни исчезновения, ни возникновения жидкости. Таким уравнением является уравнение неразрывности в дифференциальной форме. Если поток в каждой точке задан вектором скорости (x,y,z) (в проекциях , и ), то уравнение неразрывности имеет вид

+ + = 0.

Уравнение неразрывности должно выполняться в каждой точке потока жидкости.

Задача 6.3.Скорость потока задана так

Ux = a (3x – 2y - z), Uy = a (3x – 2y – 2z), Uz = a (2x – 3y – z).

Проверить, возможно ли существование такого потока. В выражениях для Ux,Uy и Uz постоянный коэффициент a служит для сохранения размерности скорости в правой части.

Решение.Подсчитаем частные производные:

= 3a; = - 2a; = - a.

Складывая их, получаем ноль, поэтому уравнение неразрывности выполняется и такой поток может существовать.


Дата добавления: 2015-04-18; просмотров: 6; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты