Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Относительный покой при вращении вокруг вертикальной оси




В этом случае на жидкость действуют силы давления, силы тяжести и силы инерции переносного вращательного движения ускорения массовых сил будут равны:

Дифференциальное уравнение примет вид:

После интегрирования, с учетом, что получим

Уравнение (3.11) является уравнением параболоида вращения, а поверхности равного давления образуют семейство параболоидов вращения, сдвинутых вдоль вертикальной оси. Каждый параболоид характеризуется некоторым значением постоянной С. Для параболоида свободной поверхности принимаем, что при z=zo (рис. 3.2) x = y= 0, поэтому c = -zo. Тогда уравнение свободной поверхности примет вид: или

Закон распределения давления по объему жидкости получим из уравнения (2.6), подставив в него соответствующие значения X, Y и Z. После интегрирования получаем:

.

Постоянную интегрирования определим из условия, что при и , т.е. . После подстановки окончательно имеем: .

Для частиц жидкости расположенных на одной вертикали можем записать:

где , т.е. существует обычный гидростатический закон распределения давления.


Поделиться:

Дата добавления: 2015-04-18; просмотров: 153; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты