Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Код вопроса 2811652





Консольная балка длиной l нагружена равномерно распределенной нагрузкой интенсивности q. Жесткость поперечного сечения на изгиб по всей длине постоянна. Прогиб свободного конца балки по абсолютной величине равен …

   
     
     
     

 

Решение:
Начало координат выберем на левом конце балки. Рассматривая равновесие левой части консоли, составим выражение для изгибающего момента в произвольном сечении с координатой z.


Запишем дифференциальное уравнение упругой линии балки:
, или
Проинтегрируем его дважды:


Произвольные постоянные интегрирования найдем из граничных условий (условий закрепления сечений балки). Прогиб и угол поворота сечения в заделке равны нулю: и Откуда
Окончательно получим

Данное уравнение позволяет определить перемещение в любом сечении балки.
Прогиб свободного конца консоли равен:
Знак «минус» показывает, что перемещение направлено вниз и не совпадает с положительным направлением оси w.



Поделиться:

Дата добавления: 2015-08-05; просмотров: 90; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты