Задача с параметром в целевой функции
Предположим, что коэффициенты линейной функции могут изменяться в некоторых допустимых пределах , тогда для удобства исследования коэффициенты линейной функции можно заменить выражением , где – постоянные, а – параметр, изменяющийся в некоторых пределах. В этом случае математическая задача может быть поставлена следующим образом.
Дана линейная функция
(3.1.1)
и система линейных ограничений
, (3.1.2)

Считая значение параметра равным некоторому числу , находим симплексным методом или методом искусственного базиса решение, полученной таким образом задачи линейного программирования.
В результате при данном значении либо найдем оптимальный план задачи, либо установим ее неразрешимость. В первом случае, используя элементы – й строки последней симплекс - таблицы решения задачи, в которой записаны числа , находим:


Для всех задача имеет один и тот же оптимальный план, что и при .
В том случае, если задача при неразрешима, – в строке последней симплекс - таблицы ее решения имеется число , где . Тогда:
1) если , то задача неразрешима для любого ;
2) если , то задача неразрешима для всех ;
3) если , то задача неразрешима для всех .
Определив все значения параметра , для которых задача имеет один и тот же оптимальный план или для которых задача неразрешима, получаем промежуток изменения параметра , который исключаем из рассмотрения. Снова полагаем значение параметра равным некоторому числу, принадлежащему промежутку, и находим решение полученной задачи.
После каждой итерации определяется либо промежуток, в котором для всех значений параметра задача имеет один и тот же оптимальный план, либо промежуток, в котором для всех значений параметра задача не имеет решения.
Процесс нахождения решения задачи включает следующие этапы:
1. Считая значение параметра равным некоторому числу , находят оптимальный план или устанавливают неразрешимость полученной задачи линейного программирования.
2. Определяют множество значений параметра , для которых найденный оптимальный план является оптимальным или задача неразрешима. Эти значения параметра исключают из рассмотрения.
3. Полагают значения параметра равным некоторому числу, принадлежащему оставшейся части промежутка , и находят решение полученной задачи линейного программирования.
4. Определяют множество значений параметра , для которых новый оптимальный план остается оптимальным или задача неразрешима. Вычисления повторяют до тех пор, пока не будут исследованы все значения параметра .
Пример 3.1.1. Для всех значений параметра найти максимальное значение функции

при условиях:

Решение. Возьмем (число 0 выбрано произвольно) и найдем симплекс-методом оптимальный план.
Таблица 3.1.1.
Таблица 3.1.2.
Таблица 3.1.3.
Определим значения , при которых план, соответствующий таблице 3.1.3, останется оптимальным:

Следовательно, при задача имеет оптимальное решение: . Возьмем . Тогда столбец – разрешающий. Переходим к новому опорному плану:
Таблица 3.1.4.
Этот план оптимален при условии:

Следовательно, при При имеем:
Таблица 3.1.5.
Этот план оптимален при условии: . Следовательно, при 
|