КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Системы ограниченийДана линейная функция и система линейных ограничений (3.2.1) (3.2.2)
Алгоритм решения задачи (3.2.1)-(3.2.2) подобен рассмотренному выше алгоритму решения задачи (3.1.1)-(3.1.2). Полагая значение параметра равным некоторому числу находим решение полученной задачи линейного программирования. При данном значении параметра , либо определяем оптимальный план задачи, либо установим ее неразрешимость. В первом случае найденный план является оптимальным для любого , где
и числа и определены компонентами оптимального плана и зависят от : . Если при задача (3.2.1) - (3.2.2) неразрешима, то либо целевая функция задачи (3.2.1) не ограничена на множестве планов, либо система уравнений (3.2.2) не имеет неотрицательных решений. В первом случае задача неразрешима для всех , а во втором случае определяем все значения параметра , для которых система уравнений (3.2.2) несовместна, и исключаем их из рассмотрения. После определения промежутка, в котором задача (3.2.1) - 3.2.2) имеет один и тот же оптимальный план или неразрешима, выбираем новое значение параметра , не принадлежащее найденному промежутку, и находим решение полученной задачи линейного программирования. При этом решение новой задачи ищем с помощью двойственного симплекс-метода. Продолжая итерационный процесс, после конечного числа шагов получаем решение задачи (3.2.1) - (3.2.2). Итак, процесс нахождения решения задачи (3.2.1) - (3.2.2) включает следующие основные этапы: 1. Считая значение параметра равным некоторому числу , находят оптимальный план или устанавливают неразрешимость полученной задачи линейного программирования. 2. Находят значения параметра , для которых задача (3.2.1) - (3.2.2) имеет один и тот же оптимальный план или неразрешима. Эти значения параметра исключают из рассмотрения. 3. Выбирают значения параметра из оставшейся части промежутка и устанавливают возможность определения нового оптимального плана. В случае существования оптимального плана находят его двойственным симплекс-методом. 4. Определяют множество значений параметра , для которых задача имеет один и тот же новый оптимальный план или неразрешима. Вычисления проводят до тех пор, пока не будут исследованы все значения параметра . Пример 3.2.1. Для каждого значения параметра найти максимальное значение функции Решение. Считая , находим решение:
Таблица 3.2.1.
Таблица 3.2.2.
Оптимальный план при : . Этот план будет оставаться оптимальным, пока среди его компонент не окажется отрицательного числа:
.
Следовательно, при : Исследуем, имеет ли задача оптимальные планы при . Если , то и, следовательно, не является планом задачи. Поэтому надо перейти к новому плану. Это можно сделать, когда в строке имеются отрицательные числа. В данном случае это условие выполняется. Переходим к оптимальному плану, применяя двойственный симплекс-метод.
Таблица 3.2.3.
, Этот план остается оптимальным при . Если , то это решение не является планом, так как При , не является планом, так как . С помощью таблицы 3.2.2 переходим к следующему решению:
Таблица 3.2.4.
, Этот план оптимален при условии . При задача неразрешима, так как в строке нет отрицательных чисел.
|