Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


ЛОГИЧЕСКИЕ 321




надлежащих постулатов (логич. аксиом и правил вы­вода).

Изоморфная (см. Изоморфизм и гомоморфизм)ин­терпретируемость классич. логики высказываний в тер­минах логики классов обусловливает существование теоретико-множеств. операций, аналогичных каждой из её Л. о. в том смысле, что они подчиняются одним и тем же взаимным соотношениям и образуют буле­вы алгебры (соответственно алгебру высказыва­ний и алгебру множеств; см. Алгебра логики). * Ч ё p ч А., Введение в математич. логику, пер. с англ., т. 1, М., 1960, §§ 05, 06, 15; С то л л Р.-Р., Множества. Логика. Аксиоматич. теории, пер. с, англ., М., 1968. ЛОГИЧЕСКИЕ ОШИБКИ,ошибки, связанные с на­рушением в содержат. мыслит, актах законов и правил логики, а также с некорректным применением логич. приёмов и операций. В логике рассматриваются раз­личные виды Л. о., возникающие в процедурах опре­деления и деления понятий, в дедуктивных и индук­тивных выводах, в доказательстве и т. п. Так, наруше­ние правил определения понятия приводит к ошибоч­ным — несоразмерным, содержащим в себе порочный круг или тавтологию — дефинициям. Нарушение правил силлогизма приводит к логически неправомер­ным формам выводов, не обеспечивающим истинность заключения при условии истинности исходных посылок. Л. о. в доказательствах являются: подмена тезиса (ignoratio elenchi), ошибка, состоящая в неправиль­ности умозаключений, на к-рых строится рассуждение, недоказанное основание доказательства (petitio prin-cipii), круг в доказательстве (circulus in demonstrando), тавтология в доказательстве (idem per idem) и др. Ошибками индукции могут быть поспешные обобще­ния, напр. на базе «простого» перечисления или заклю­чение «после этого, значит по причине этого» (post hoc ergo propter hoc). Л. о., к-рые совершаются непредна­меренно, называются паралогизмами; совершаемые же преднамеренно — софизмами.

• Челпанов Г. И., Учебник логики, М., 1946; Ас­мус В. Ф., Учение логики о доказательстве и опровержении, [М.], 1954; Кондаков Н. И., Логич. словарь-справочник, M., 19752.

ЛОГИЧЕСКИЙ АТОМИЗМ, номиналистич. и плюра-листич. учение о действительности, выдвинутое Рас­селом и Витгенштейном в 10—20-х гг. 20 в. Программа Л. а. предусматривала построение логически совер­шенного языка, моделью к-рого объявлялся логич. язык. Один из осн. постулатов Л. а. — признание язы­ка образом действительности: его предложения изобра­жают сочетания объектов так же, напр., как проекция к.-л. геометрич. фигуры изображает эту фигуру. Л. а. рассматривал мир как совокупность лишь внешне свя­занных друг с другом атомарных фактов (т. е. не имею­щих составных частей). Теория Л. а. отрицала всякую закономерную внутр. связь в действительности, сводя процесс познания к бесконечному описанию атомарных фактов. Несостоятельность Л. а. была настолько оче­видна, что уже в 30-х гг. Рассел и Витгенштейн отказа­лись от своей доктрины.

ЛОГИЧЕСКИЙ ЗАКОН,термин, применяемый в ши­роком смысле для обозначения любой достаточно «об­щепринятой» нормы (закономерности) правильного рас­суждения. В формализов. языках совр. логики (исчи­слениях) Л. з. соответствуют тождественно-истинные (общезначимые) формулы, в т. ч. аксиомы этих исчис­лений, а также постулируемые для них правила вы­вода. Из существования различных систем аксиом и правил вывода для логич. (и логико-математич.) ис­числений следует, что понятие Л, з. относительно; но оно не является произвольным, поскольку выбор кон­кретной аксиоматич. системы обусловлен рядом объек­тивных закономерностей природы и мышления.

В узком смысле слова Л. з. называются, следуя антич. и ср.-век. традиции, следующий законы мышле-


Поделиться:

Дата добавления: 2015-09-13; просмотров: 115; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2025 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты