Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Геном бактерий




Генетическая система бактерий имеет, по крайней мере, четыре особенности, присущие только этим организмам.

1. Хромосомы бактерий (и, соответственно, плазмид) располагаются свободно в цитоплазме, не отграничены от нее никакими мембранами, но связаны с определенными рецепторами на цитоплазматической мембране. Поскольку длина хромосомы (у Е.соli около 1мм) во много раз превышает длину бактериальной клетки (1,5—3,0 мкм в среднем), хромосома особым компактным образом в ней упакована; молекула хромосомной ДНК находится в суперспирализованной форме и свернута в виде петель, число которых составляет 12—80 на хромосому. Петли в центре нуклеоида объединяются за счет связывания ДНК с сердцевинной структурой, представленной молекулами особого класса РНК — 4,5S РНК. Такая упорядоченная упаковка обеспечивает постоянную транскрипцию отдельных оперонов хромосомы и не препятствует ее репликации. Возможно, что петли упакованной хромосомы способствуют компартментализации рибосом.

2. Хотя бактерии являются гаплоидными организмами, т. е. имеют один набор генов, содержание ДНК у них непостоянно, оно может при благоприятных условиях достигать значений, эквивалентных по массе 2, 4, 6 и даже 8 хромосомам. У всех прочих живых существ содержание ДНК постоянное, и оно удваивается (кроме вирусов и плазмид) перед делением.

3. У бактерий в естественных условиях передача генетической информации происходит не только по вертикали, т. е. от родительской клетки дочерним, но и по горизонтали с помощью различных механизмов: конъюгации, сексдукции, трансдукции, трансформации.

4. У бактерий очень часто помимо хромосомного генома имеется дополнительный плазмидный геном, наделяющий их важными биологическими свойствами, нередко — специфическим (приобретенным) иммунитетом к различным антибиотикам и другим химиопрепаратам.

Содержание ДНК у бактерий зависит от условий их роста: при благоприятных условиях оно возрастает до величин, соответствующих массе нескольких хромосом. Это уникальное свойство бактериального генома. Биологическое значение его состоит в том, что, регулируя содержание копий своих генов (а оно будет определяться количеством копий синтезируемых хромосом), бактерии одновременно приспосабливают скорость своего размножения применительно к условиям роста. Наряду с увеличением содержания ДНК у бактерий в этом случае существенно возрастает и количество рибосом.

Благодаря этому создаются необходимые условия для транскрипции и трансляции (а у бактерий они происходят одновременно) нескольких копий генов одновременно, возрастает суммарная скорость биосинтеза всех субклеточных и клеточных структур и, соответственно, скорость размножения бактерий. Время клеточного цикла бактерий сокращается от нескольких часов до 20-30 мин. Скорость размножения определяет возможность накопления в окружающей среде большого запаса клеток данного вида. Это и является причиной того, что бактерии существуют в природе многие миллионы лет. Возможность регулировать скорость собственного размножения — одно из главных условий, обеспечивающих выживание бактерий в окружающей среде, а, следовательно, и сохранение вида в природе.

Наименьшая свободноживущая клетка – Mycoplasma, состоит из цитоплазмы, окруженной элементарной мембраной, толщиной 75 А. Клетка содержит менее 109 атомов (не считая воды), геном (ДНК длиной 2,28мм), 400 рибосом. Масса белка около 5,10-15гр., что эквивалентно 60 000 белковых молекул с молекулярным весом 50 000 каждая.

 

Табл.5. Минимальный (256) набор генов, необходимый живой клетке

 

Функция белков Число белков
Преобразование энергии
Транспорт и метаболизм аминокислот
Транспорт и метаболизм нуклеотидов
Транспорт и метаболизм углеводов
Метаболизм липидов
Метаболизм кофакторов
Биогенез рибосом и трансляция
Репликация, рекомбинация, репарация, транскрипция
Структурная функция
Секреция и адгезия
Шапероны
Транспорт неорганических ионов
Предсказана гипотетическая функция
Функция неизвестна

 

 

Сравнение наборов генов M. genitalium и H. Influenzae позволило установить минимальный набор генов, необходимый живой клетке (табл. 5).

Все, что бактерия умеет делать кодируется ее генетическим аппаратом. То есть восприятие сигналов из внешней среды зависит от того, какие рецепторы находятся на мембране клетки, а рецепторы кодируются бактериальной ДНК. На примере кишечной палочки рассмотрим, как устроен геном бактерии. У кишечной палочки двуцепочечная ДНК замкнута в кольцо. Это кольцевая молекула состоящих из 4,6 млн. пар нуклеотидов, что соответствует молекулярной массе 3 х 106 Да. Длина молекулы составляет порядка 1.5 мм. Время репликации этой молекулы 20 мин. Есть бактерии, которые размножаются медленнее, чем кишечная палочка.

Структура бактериальной ДНК как кольцевой была предложена в 1956 году Жакобом и Вольманом. Это было революционное предположение, так как до этого считалась, что ДНК линейная. Но революция во взглядах произошла еще раз, когда выяснилось, что геном бактерии может быть представлен как кольцевой, так и линейной молекулой ДНК (табл.6). Кроме основной молекулы ДНК у нее могут встречаться (а могут и отсутствовать) плазмиды – небольшие (3-5 тысяч нуклеотидов) кольцевые или линейные ДНК, часто несущие гены устойчивости к антибиотикам и другие необязательные системы. Именно из-за наличия плазмид (а они способны передаваться горизонтально от клетки к клетке, даже между бактериями разных видов), распространение устойчивости к антибиотикам происходит очень быстро между всеми бактериями, живущими в одном месте.

Таким образом, в состав генома бактерий могут входить как кольцевые, так и линейные молекулы ДНК. И геном может состоять из одной или из нескольких молекул ДНК, называемых хромосомами или плазмидами. Если гены, которые содержаться на дополнительной молекуле, необходимы клетке, то эта молекула называется минихромосомой, а если без них клетка может обойтись – то плазмидой.

Размеры молекул ДНК указывают в парах оснований, п.н. или bp (base pairs). Для больших фрагментов используют т.п.н. или kb (kilo base)=103 bp и Mb (mega base)= 106 bp. Геномы бактерий - от 0.58 Mb у Micoplasma genitalium до 9.5 Mb у Myxococcus xanthus

 

 

 

Табл.6. Геномы некоторых бактерий

 

 

Метод определения последовательности нуклеотидов, или секвенирование, был разработан в 70-х годах. Две группы ученых независимо друг от друга разрабатывали эти методы. Один из них был разработан Сэнгером, второй – Максамом и Гилбертом, и все они получили в 1980 году Нобелевскую премию. До сих пор созданные ими принципы используются при секвенировании, сейчас уже проводимом не вручную, а автоматами.

В 1995 году был прочтен первый относительно небольшой геном бактерии Haemophilus influenzae. Это было огромным достижением, очень большой сенсацией. До этого удавалось определить полностью только геномы вирусов, которые на порядок меньше геномов бактерий. На настоящий момент полностью прочитаны геномы более 100 видов бактерий, среди которых представители таких родов патогенных бакте­рий, как Streptococcus, Staphylococcus, Corynebacterium, Yersinia и др. В табл.7 приведены некоторые примеры расшифрованных геномов бактерий.

Как показали геномные исследования, патогенные бактерии весьма раз­нообразны по комбинаторике генов, определяющих патогенность. У них име­ются специфические гены, контролирующие синтез факторов вирулентности (адгезины, инвазины, порины, токсины, гемолизины). Большинство таких генов собрано в кластеры («островки патогенности»). Они могут быть локали­зованы в хромосоме бактерии или в плазмидах.

«Островки патогенности» участвуют в геномных перестройках, что и определяет приспособляемость и широкую внутривидовую вариабельность бактерий. Поскольку геномы бактерий небольшие (от 100 000 до 4 млн пар нуклеоти­дов), многое удалось уже сделать в области функциональной геномики. И струк­турные, и функциональные исследования геномов патогенных бактерий

 

Табл.7. Некоторые патогенные бактерии, геномы которых секвенированы

 

Бактерия (штамм) Болезнь Размер генома п.н.
Mycoplasma pneumoniae Пневмония
Mycobacterium tuberculosis Туберкулёз
Neisseria meningitidis Менингит
Vibrio cholerae (El-Tor) Холера
Helicobacter pylori Гастрит, язвенная болезнь
Treponema pallidum Сифилис
Chlamidia trachomatis Трахома
Hemophilus influenzae Отиты, ОРЗ

 

 

пока­зывают их высокую пластичность. Эти представления имеют непосредственное практическое значение, во-первых, для разработки экспресс-методов типирования бактерий и оценки риска бактериальной контаминации; во-вторых, для создания лекарств, нацеленных на специфические мишени, блокиру­ющие работу генов патогенности; в-третьих, для более целенаправленного создания вакцин.

Сейчас можно очень многое узнать о неизвестной бактерии, если прочесть ее геном. По тому, какие гены входят в состав генома, можно определить, какой образ жизни ведет бактерия. Это важно для возбудителей различных заболеваний – по составу их генов можно установить, к каким веществам они чувствительны, и точно подобрать лекарство или создать новый эффективный препарат для лечения. К примеру, размер генома паразитической бактерии микоплазмы (Mycoplasma genitalium) – 580000 пар нуклеотидов. 90% ее генома кодирует белки, 10% содержат регуляторные последовательности белков, т.е. белки не кодирует. У нее 468 генов (это можно с точностью определить по нуклеотидной последовательности генома) и самый высокий процент кодирующих последовательностей. Она живет в постоянных условиях внутри клетки, ей мало, что нужно регулировать. У других бактерий большую долю занимают кодирующие белки, а у человека, по сравнению с бактериями, кодирующие белки занимают намного меньшую часть генома (2%). В принципе, это соответствует развитию общества: все меньшую часть занимает производство, и все большую часть занимает сервис и информационные технологии. Разное количество генов отвечает за разные клеточные фукнции (рис.28).

 

 

Рис.28. Распределение функций генов Е.cоli, выявленное по полной нуклеотидной последовательности генома

 

Что означают различия в количестве кластеров рибосомной РНК? Кишечная палочка делится раз в двадцать минут, туберкулезная микобактерия делится раз в сутки. Кстати, это представляет трудности в диагностики туберкулеза (для того, чтобы выделить из мокроты больного эту бактерию, необходимо ее выращивать неделями, чтобы там что-то можно было проанализировать). Из-за того, что она так медленно растет, ей не нужно активно синтезировать рибосомы, поэтому у нее меньше генов, нужных для синтеза рибосом (в 10 раз меньше, чем у свободно живущей и активно растущей Bacillius subtilis).

В геноме бактерий могут присутствовать гены, похожие по нуклеотидной последовательности. Такие гены называются гомологичными (гомо - одинаковый). Гомологичные гены могут появиться в геноме в результате удвоения (дупликации) одного гена. В этом случае их называют паралоги. При наличии в геноме нескольких гомологичных генов они могут приобрести разные функции.

Некоторые гены, сходные по строению, но немного отличающиеся по функциям, имеют большую копийность в геноме. Копийность генов связана с образом жизни бактерий. Это можно сравнить, к примеру, с языком. Так, у народов, занимающихся скотоводством, лошадь имеет множество названий (не как у нас: лошадь, жеребенок, мерин, а множество названий для лошадей разного назначения и разного возраста); у эскимосов много слов, обозначающих снег. Также, в геноме бактерий многокопийны те гены, которые важны для жизни бактерий. Говорят, это те гены, которые обуславливают экологическую специфичность.

Каким же образом, геномы бактерий меняются в процессе эволюции? Все изменения можно классифицировать на пять групп: точечные замены (замены одной «буквы» на другую), дупликации и амплификации (копирование участков генома), делеции (выпадение участков генома), инверсии и транслокации (перестановка участка гена в другую часть генома или изменение его ориентации в геноме), горизонтальный перенос генов (фрагмент ДНК переносится из одной бактерии в другую).

Плазмиды. Впервые обнаруженные у E.coli генетические элементы, которые передавались у нее по наследству во внехромосомном состоянии, получили название просто генетических факторов. Раньше всего были обнаружены Со1-фактор (фактор, контролирующий у E.coli синтез бактерицидных белков, А. Грациа, 1925) и F-фактор (фактор, контролирующий примитивный половой процесс у бактерий — конъюгацию, У. Хэйс, 1953). Интерес к этим факторам сильно возрос после того, как в 1963г. японский ученый Т. Ватанабе сообщил, что передача множественной лекарственной устойчивости у дизентерийных бактерий происходит также при участии независимых от хромосомы генетических элементов, названных R-факторами (от англ. resistanсе — устойчивость). В 1976г. всем подобного рода генетическим элементам было дано название плазмид и следующее определение: «Плазмида (экстрахромосомный генетический элемент) представляет собой репликон, который стабильно наследуется в экстрахромосомном состоянии».


Поделиться:

Дата добавления: 2015-09-14; просмотров: 172; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты