Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Теорема о равнораспределении энергии по степеням свободы.




Читайте также:
  1. II. Теорема Декарта
  2. Автоматика пистолета-пулемета основана на использовании энергии отдачи свободного затвора.
  3. Автоматическое действие пулемета основано на использовании энергии пороховых газов, отводимых из канала ствола к газовому поршню затворной рамы.
  4. Ввод образа сверхэнергии в действие
  5. Властелины Энергии
  6. Властелины энергии
  7. Внутренняя активность стягивает на себя большое количество энергии и структурирует пространство таким образом, что мы получаем в итоге то, что мы хотим.
  8. Возвращение энергии к ее естественному состоянию
  9. Воздух являет собой энергию совершенной свободы.
  10. Вопрос: Об источниках энергии

Сначала сформулируем теорему, а затем проясним её смысл и границы применимости. На любую степень свободы приходится в среднем одинаковая энергия, равная

. (6.22)

Определим понятие числа степеней свободы. Число степеней свободы i равно числу независимых координат, однозначно определяющих положение тела (или молекулы) в пространстве. Для одноатомных молекул i=3, так как трёх координат (x, y, z) достаточно для того, чтобы однозначно задать положение материальной точки в трёхмерном пространстве.

Поступательных степеней свободы всегда три: iпост=3; поэтому из соотношения (6.21), дающего среднюю энергию поступательного движения молекулы, получаем (6.22).

Для абсолютно твёрдого тела три координаты (x, y, z) задают положение его центра масс (это три поступательных степени свободы: iпост.=3) и три угловых координаты (углы поворота относительно трёх взаимно перпендикулярных осей, рис.6.3а) задают ориентацию тела в пространстве: iвр.=3. Всего

i=iпост+iвр.=3+3=6.

То же самое получим для произвольной жёсткой многоатомной нелинейной молекулы, поскольку расстояния между атомами фиксированы: i=6. В случае жёсткой двухатомной молекулы или любой линейной (рис.6.3б) одну вращательную степень свободы нужно исключить: вращение относительно оси молекулы не имеет смысла, так как атомы считаем материальными точками:

i=iпост+iвр.=3+2=5.

Это модель «жёсткая гантель».

 

 


Итак, для жёстких молекул (рис.6.4):

Смысл теоремы о равнораспределении в том, что все виды движения равноправны. При столкновениях молекул они обмениваются энергией, так что на любую степень свободы в среднем должна приходиться одинаковая энергия.

При высоких температурах расстояния между атомами в молекуле изменяются, молекула не является жёсткой. Поэтому нужно учитывать степени свободы, связанные с изменением расстояний между атомами вследствие колебаний атомов (колебательные степени свободы). В случае двухатомной молекулы колебательная степень свободы одна: iкол.=1, - это расстояние между двумя атомами. Однако при колебаниях имеют место два вида энергии: кинетическая и потенциальная; поэтому колебательные степени свободы нужно удваивать. Вводят понятие эффективного числа степеней свободы:



iэфф.=iпост+iвр.+2iкол..

Для модели двухатомной молекулы «нежёсткая гантель» (две материальные точки на «пружинке», рис.6.5)

iэфф.=iпост+iвр.+2iкол=3+2+2.1=7.

Колебательные степени свободы возбуждаются только при достаточно высоких температурах (тысячи кельвин), так что при обычных условиях их учитывать не надо. При достаточно низких температурах (десятки кельвин), «замораживаются» вращательные степени свободы, и нужно учитывать только поступательные. Эффект «замораживания» степеней свободы при понижении температуры (сначала колебательных, а затем вращательных) – чисто квантовый и не может быть объяснён в рамках классической статистики; – в этом состоит ограничение применимости теоремы о равнораспределении энергии по степеням свободы.

Поскольку на одну степень свободы молекулы приходится энергия , то средняя энергия одной молекулы, у которой i степеней свободы, равна

. (6.23)

Полная внутренняя энергия U идеального газа в N раз больше (N – число молекул газа):

,

. (6.24)

При выводе (6.24) под внутренней энергией подразумевалась суммарная кинетическая энергия всех молекул. Потенциальная энергия взаимодействия молекул не учитывалась, поскольку взаимодействием молекул идеального газа можно пренебречь. Однако понятие внутренней энергии шире, чем суммарная кинетическая энергия хаотического движения молекул и потенциальная энергия их взаимодействия между собой. В неё нужно включать кинетическую и потенциальную энергию всех частиц: электронов в атомах, нуклонов в ядрах атомов и т.д. Внутренняя энергия не включает кинетическую энергию движения тела как целого (движения центра масс и вращения тела как целого) и потенциальную энергию тела во внешних полях.



 


Дата добавления: 2015-09-14; просмотров: 30; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2022 год. (0.011 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты